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Thinking about non-linear smoother.

John W. Tiukey

Technical Report No. 291, (Seies 2)
Depwitnent of Statistics

Priniceton Unhversity
Prnceon, New Jersey 08544

Any kind of smoother is not easy to grapple with, either to understand or to

choose, but non-linear smoothers - - often the smoother, to be preferred - - are

harder to grasp than the simpler, linear cums The purpose of this account in to give

its readers some background with which to thinlk about nob-linear xmoothern,

particularly reistant ons. It does not attempt the task - - probably today quite

unfeasible - - of providing a comprehensive guide to which smoother to ue where

and when.

non-linearity?e

The word a non-linear' dons not look too different from the word 0 linear", but

similarity of apearance covers up a tremedous difference in scpe. Think of the

earliest days of the ancient Greeks, when their ships never went outside the

Miediterranian Sea - - and the then differenc betwee 'Mediterramian' and 'non-

Msediterranian'. At Western history evolved a an-mdIltrraulan' grew to include

* the Bay of Biscay, the East Coast of Africa, the Atlantic,, ladla and Pacifi Oceans

* and distinctive land areas on zmany continents. Maoe recently area on the smooi,

and limited aspects of the surface of a nmzber of planets have to be included. What

'na-Meiteranan'covers is now much mar. diverse than what 'Mmditawanian'

ever covered and the relative diversity is still growing. The relation of 'non-

linear' to 'linear' - - In any field, not jut In moothing - - is like that of guon-

Pfvpnvd in mnwtIoa with imr at PrlamtmiUniveuity q Inodby te Aimy Imth Oe(Dur-
hm) thro DAAL0386-K.0073.
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Mediterranian" to "Mediterranian". So we ought to expect the discovery and

exploration of one Interestimg area after another - - some which are quite similar to

linear and some of which are quite different. We will need new tools - - in the

Mediterranian, the Greeks had little need for either ice axes or parachutes - - and

new ways of looking at the phenomena we uncover.

It is not easy to remember that the non-linear might prove to be infinitely more

diverse than the linear, but we ought to try.

* smoothing and smoothers *

The processes of smoothing - - and the algorithms that carry them out - - surely

have purposes, but it is often not easy to be explicit what these purposes are. (We

will return shortly to some of them.) And it is quite clear that

a) there are qualitatively different purposes,

b) they often have to be compromised. AND

c) quantitatively different compromises of the same purposes are often needed.

As a result, even lnear smoothing involves a broad repertory of detailed processes

and algorithms - - and is not at all easy to think about. Making choices among linear

smoothers Is not easy; the writer knows of no book that explains 'how to choose in

a really helpful manner. (Often, no linear smoother is able to do what is needed.)

With both "smoothing" and "non-linear" in such difcult hard-to-handle states,

is it any surprise that thinking about their combination "non-linear smoothers' is

not easy? And will not be made easy by reading this paper? Or by reading any

book that can be conceived today?

0 some purposes

There are a diversity of purposes for which smoothing seems appropriat.

Some of them can be identified without too much trouble, including:
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d) tsi the asharp corners off data to be plotte so that the viewrs eye-

and-brain (often abbreviated 'eye!) can ee appropriate general aspects of the

data's behavior better (otherwise isolated points, for Instance6 often seize more

attention than they deserve),

e) ridding the data of much of the Irrelevant variation that contributes to each

of its numbers, without disturbing too seriously the dower changes that reflect

the changing underlying causes that are, in those particular instances our real

ConceM

f) preparing the data for further processing, especially for further prOCessing

that - - like the eye - - would be oversensitive to eg ties.

g) separating, and setting aside, more rapid changes from less rapid ones, at

least to whatever degree is possible.

These purposes may sound rather similar, but close scrutiny - - especially of the

smoothers to which they lead - - will show not only their distinctness, but a great

diversity of need within each of them. We will try, in this paper, to help with

thinking about purposes and about the relation of choices to purposes, but all of us

need to admit that there is no substitute for practice - - and especially for practice

that leads, many times over, to ompopsw of the elods of different ezamples of such

choices on either real or simulated data - - better on both.

Further purposes that may not, at least at Arst glance, seem like saoothing arc

h) preserving the breaks or sharp corners that might prove important, while

eliminating the little wiggles that are likely to distract the eye, AND

i) catering to parsimony by replacing heavily smoothed results by closed form

functions expresed by simple formulas

lkt thes really do belong to the ame broad clas of urposes

The relation of smoothing to forecasting is thought to be smple and close by
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some, but less so by others

* modes of description *

How do we want to describe

. ~smoothers - processes of smoothing

.. in a way or ways that will be most helpful? The answer here is equally not

straightforward. To explain why, we will gain by listing the more obvious modes

in which we often need to describe a smoother (which we assume has already been

given a label):

j) Algorithms - - descriptions of the details of the successive steps from input to

output,

k) Strivings - - what properties/behavior we have tried to build into each of our

smoother., and how vigorously we have pursued them,

m) Benchmarks - - how each of our smoothers behaves - - qualitatively and

quantitatively - - in a well-chosen set of standard situations,

n) Properties - - what we can say, in varying generality, about how each

smoother performs - - this may be qualitative or quantitative, and is likely to

overlap, to a limited degree, with "Benchmarks'.

We are, in most subareas, early in our study of non-linear smoothers. As as

consequence, we often have to emphasize algorithms, and perhaps strivings. If we

knew more, we would be able to emphasize benchmarks and properties, which would

be to our great advantage. Just looking at an algorithm - - even for one experienced

in smoother design - - is a poor way - - often a very poor way - - to understand how

the smoother in question will perform.

Clearly we - - or someone - - has to know an algorithm, else we or our

computers would not be able to apply it. Howeverinferring very much about

behavior directly from the algorithm is not at all easy - - often it is impossible. The

V. *-,,4 . I 
j  
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algorithm makes the label realizable. Only trial - - perhaps by ourselves on a

limited number of examples, but not infrequently, fortunately, by others on more

extensive and more diverse examples, i likely to lead to useful insight into its

detailed behavior, since few aspects of general behavior have so far proved

accessible to mathematical argument, even for some smoothers; or some components

of them. (Most smoothers that will interest us here are assembled from

components.)

SPlan

The body of this account, which now follows, tries to develop two frameworks;

one for kinds of description, and one for the presently most attractive classes of

smoothers, in the hope that the two will help each of us in thinking about non-

linear smoothers and non-linear smoothing. Both explicit discussion and examples

will be confined to one-dimensional smoothing, but we need to notice that some of

the more valuable applications are to two-dimensional data - usually to images.

Detailed descriptions and characteristics of individual smoothers are at most

mentioned as examples. (At some later time, some extension, perhaps an appendix to

this account, might arise to present such information.)

Sscope

While. as just noted, something is known about smoothing for values scattered

in the plane, etc., we will here only be concerned with smoothing of finite sequences,

where the data consists of a finite set of numbers indexed by integers or by more or

less regularly spaced numbers (ties among the Index values, however, not excluded).

* There is, in principle, an Important distinction between equl-spaced and non-

equi-spaced sequences. There are times when we do recognize this distinction. But

the behavior of many of the methods that we discuss does not seem responsive to

this distinction. As a result, we have often to recommend treating non-equally-
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spaced sequences in the same way we would recommend if they were equally spaced.

This is particularly true with median-based smoother.

PART L SOME KINDS OF BEHAVIOR

5588a* 2. Problems and strivings ******

Strivings, here as elsewhere, arise as we struggle with problems. So we ought

to begin with some of the clearly recognizable problems.

a short problem list *

It is now time, therefore, to identify some of the most prominent technical

problems, with the intention of shortly discussing each in turn:

. a) erosion - - the tendency of smoothers, especially naive ones, to "wear down

the peaks and fill in the valleys'.

b) tenting - - the tendency of linear smoothers to respond to a single, exotically

high value by constructing a "tent! below it, and, by symmetry, to respond to a

single, exotically low value by constructing an inverted tent above it.

c) diversity - - the fact that a particular property of a smoother may be an

advantage in some situations, bat a disadvantage in others

d) baanke - - the need, in choosing a smoother, to balance incommensurables - -

as when greater smoothness of result requires the smoothed values to be not as

close to the originally given values ("balnce" seems more elegant than

compromise", but the idea is the same).

erosion

The existence of erosion causes many smooths to be shrunk toward a common

value, global or sectionaL To correct this, we need to begin by comparing, in some

way, the smooth with the data. One simple and useful way is to introduce the rough,

K 
I N_
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according to the identity

data u-2 mooth + rough

anad to seek evidence for needed modification of the smooth from the behavior of the

rough-

- If we find systematic behavior in the rough, it is natural to want to transfer

that systematic behavior from rough to smooth. Often, the simplest way to do this

is to smooth the rough, and then start from the two identities

data =-smooth + rough

rough =-(smooth of rough) + (rough of rough)

and to substitute the second in the first, inserting appropriate brackets, to reach

data (smooth + ( smooth of rough )] + [(rough of rough)]

It is now natural to take

new smooth - smooth + (smooth of rough)

* new rough - rough of rough

and to describe the process as reroxughing. (If the second smoother is the same as the

a ~first, we alternatively refer to the process as twicing.)

4 Many ways of dealing with erosion that were initially described in other ways

A-N can be put into the form of reroughing. Any kind of correction that depends only on

the values of the rough - - anything which does not look at the smooth - -Is a

process that accepts a sequence - - the rough - - and produces a sequence consisting of:

the values to be taken out of the rough for insertion in the smooth. This process,

since it generates a smoother sequence from an input sequence (here the first rough)

can be regarded as a smoother. Its application can thus be considered reroughing.

If we are to seek more general ways of dealing with erosion, then, we must look

at the smooth as well as the rough. This means that we need to try to distinguish



peaks, that will be cut down, from valleys, that will be illed up - - and to

distinguish both from upward or downward inclines. One simple approach, not

supposed to be perfect or even highly effective, would be to look at a second

difference of the smooth, spread out over a moderate range of the index.

If we adopt

Y =data

zi =smooth
ri M rough

where, of course,

y, az. + r,

we could look at the values of such expressions as

-,) = +-3-2 +zi 3

6
+zi.-4-2zi +zi +4

or their analogs - - or some combination of these - - embedding them in some so-far

*unspecifed algorithm.

While these might be useful in building. probably after combination with

appropriate values of the rough, an effective erosion compensator for a linear

smooth, we are likely to need a modifed approach when dealing with non-linear

, " smoothers.

For some of the simpler non-linear smoothers, we. might consider

K3(i) = mediani -(y -yj - 0, y +3-y,

K4 () median{-(yj-y .- , y.+4-yi)

and so on, which only respond quite near either the top of a peak or the bottom of a

valley. Little, if anything, seems to have been done about using such erodibility

indicators, either alone or in conjunction with the values of the rough.
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It is far from clear, however, whether there are practical circumstances where

the influence of reroughing away from peaks and valleys is unfortunate. Thus we

do not really understand where, if anywhere, we would want such modified

. ]procees of transfer from rough to smooth.

8tenting

If we take the simple sequence with a single exotic value, 144, 96, 132, 144, 108,

84, 60, 72, 48, 1200, 48, 24, 36, 50, 48, 84, 96, 132, 120, 144 and smooth by running

means of 3

IZ - Yi-I + Y+ + Yi I

we get the sequence 7, 124, 124, 128, 112, 84, 60, 440,432, 424, 36, 40, 48, 64, 76, 104,

' ,1*' 116, 132,? which shows the rather square "tent"...small. 440, 432, 424, -mall.., in

place of the single exotic value.. .smafl, 1200, omall, .... Further linear smoothing

will spread the tent ou, probably slanting its edges somewhat, but the total sze of

the tent will continue to resemble the roughly 1150 of the original single exotic

value's deviation from the general run of its neighbor. No linear smooth will get us

away from this effect.

The simplest way around tenting is to replace linear combinations by more

robust summaries. The simplest of these are running medians, as when

zi - mian {yi-1. yi, A J (o3)

A meia 1 I ~lYi.-1, Yi -I- Yi, Yi+i bYA+2) ("5")

or, when we are willing for the smoothed values to come half-way between adjacent

data values, as in

Z+ / 2 median lYi, YJ ,1 ('2")

+ 2 ' meIdan I Ye-1, YiY +19 Yi +2 (04P)

A single isolated exotic value will be almost forgotten by "36, 656 or "4", but not by

INW- .
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We can, of course, make use of other robust summaries, such as biweights, or

hubers. These are only likely to be chosen when we want to smooth more

vigorously, and are looking at 8 or more values of y at a time.

There are also important methods involving the robust fitting of straight lines,

etc.

* diversity

Some data sequences behave as If they had a break at some intermediate

position in the sequence. The apparent break may be a change in level - - or a

change in slope - - or something more complicated. The prototypic example of a

change in level, uncomplicated by any irregularity, is something like

--- 0. 0. 0, 0, 0. o0 , 100, 100, 100, 100 100. , - - -

Such smoother components as '3 or "* ' will leave this break untouched (and the

whole sequence unaffected). Others, like "2" repeated, will do their best to put in a

smooth transition between 0 and 100. We cannot say generally which of these behaviors

we prefer. For some kinds of data and some purposes we clearly prefer to have the

break preserved - - for others we prefer a smooth transition.

The same is true of breaks in slope - - we will discuss an example in section 9

where it seems very natural to preserve breaks in slope, and, conversely there are

many instances where this is not the case.

The question of breaks is only one of a number of questions where the

direction of preference depends upon kind of data and kind of purpose. The main

lesson to be learned from these issues of diversity is that we dare not look for a

single chosen smoother, to be recommended for use in any arbitrary situation. We

must offer the user a decent palette of smoothers - - and guidance in choosing among

them. This means, most importantly for our present concern, that the user has to
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expect to do some thinking about alternative smoothers - - and that the user ought to

expect to try more than one smoother on the same data whenever the details of the

outcome are important.

further diversity

After the qualitative choices that we have just been discussing come a variety

of quantitative choices - - shall we use a smoother based upon "3* or one based upon

050?- - shall we rerough only once, or do it again? These are often more diicult

than the qualitative choices. All that we know how to do so far is to try to "include

enough small-scale diversity in our palettes, without being excessive'. Just how we

ought to set about making up such palettes is not something that has been adequately

considered.

• balance or compromise

In the present case, our problem is complicated by incommensurability of what

we are striving for - - the largest-scale-instance of which is

reaching a smooth result, AND

keeping close to the original data

These are aims that obviously tend to pull our choice in almost opposite directions.

What is hard to face - - and a rock on which organized compromise can easily

founder - - is the apparent absence of any natural way to write down

a measure of lack of smoothness, AND

a measure of deviation from the original data

that are either in, or convertible so as to be in, comparable units.

In classical robustness as applied to location, we have had to face a similar,

much easier problem. When we are happy to work with performance under each of

2 or 3 situations, which we are happy to compromise, we face the fact that, for

IIS III~ ,
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instance:

variance (or MSE) for a standard Gaussian, AND

variance (or MSE) for the standard slash

are not directly comparable. (Here the standard sash is the distribution of a unit

Gaussian divided by an independent unit rectangular [0,1].) In the mt instance, we

can deal with this by asking what is the best - - the smallest variance or MSE - -

that we can do for Gauss alone or for slash alone, and then going over to

% excess variance

(excew over the minimum we know bow to attain) both for Gause and for slash (or

for each of the few situations that we consider).

Having dome this, a Awrt natural thing to do seems to bc e iniazersi, to

seek a compromise that minimim the aaxmum % excem variance (for two

alternatives, this means equating the two 9 - variance). While it has not yet

become ustomary to go further than to seek a single compromis, it may throw

light on our psent, mon general problem if we try to take another step.

As a tentative proposition, in the cae of only two alternatives, let us think

about proceeding as follows

If the uuinimax 6 cem variance is X identifying the yameric comp i

letus consider two satecf o mi (satellite in the spectrscp-I sense), in

S4each of which am % excew is allowed to grow to E 4, while the other is made

as small as pomible. (If we wish to go further, going to a % exceis of 2E for am

alternative is conveniently called a Am saraii.

This satellite con-co can be carried out for either a o parametr family of

ates or sme lager clam.

For the n -20 Goosadash compromise, this produces, for the one-stp biweight
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family - - using the graphs in Bell and Morgenthaler, 1981 - -

label tuning excess excess
conutant at Gauss at slash

satellite 5.5 22% 7.6%
symmetric 6.5 15% 15%
satelite 7.8 8.7% 22%
(dim satellite) 9 3.1% 31%

and for estimates bioptimal among all equivariant estimates

shadow excess excess
labe ratio at Gauss at slash

9.

satellite 2.1 6% 2.5%
symmetric 1.29 4.3% 4.3%
satellite A7 3.2% 6%

where the "shadow ratio" defines the linear combination of the two % excess

variances whose optimization gives the indicated estimates.

This whole approach is heavily undergirded by two facts

* the two criteria to be compromised have been made satisfactorily comparable

by changing from raw variance to % excess, AND

* the % excesses involved are all small (in our examples no more than 15% for

the symmetric compromises).

When we try to use explicit compromises in the smoothing situation, it is not clear

that either of the analogous facts holds for any reasonable way of re-expressing our

two measures of dissatisfaction.

It is possible, though it is not clear whether the details can be carried out, that

we can come to a comparable situation in the following indirect way:

* Let us define a smallest tolerable amount of smoothing. and measure deviation

of smooth from the given data, as a % increase over this smallest amount (a

robust measure of deviation size, perhaps like sb2 , will be required).

m~P
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* Let us define a largest tolerable amount of smoothing, and measure lack of

smoothness as a S increase of roughness over that corresponding to this

wheavyu smooth.

* Then let us play the "satellite, symmetric, satellitea game.

Clearly no one knows whether or not this is a reasonable approach (without regard

to whether Its result would be successful). It requires four difficult choices; two of

criteria and two of degree: criteria of lack of smoothness and of poorneis of fit, and

greatest (because deviations from what was observed are otherwise unacceptable)

and least (because of lack of smoothness is otherwise unacceptable) degrees of

smoothing. Moreover, the compromised % excesses probably cannot be allowed to be

too arge.

We have suggested an approach for two reasons:

" it seems an effective way to make the difficulty of the problem clear, AND

" it may encourage the suggestion of other approaches.

* non-singlenes *

An essential in current treatments of robusmess, and in the approach to formal

compromise in smoothing just considered, is the focusing on single aspects - - in the

examples above on a pair of single aspectB.

In the robustness-of-location instance, focusability was not obviously

guaranteed. We accepted the % excess variance measure, itself based on a variance

measure, because the shapes of the distributions of estimation errors of different

high-performance estimates are surprisingly similar. This is a bonus, whose

existence we have recognized as a consequence of much tedious experimental

sampling and of careful analysis of the results of such sampling; a bonus whose very

existence seems still to be beyond easy explanation. Even in that single instance, we

could hardly have counted on focumbility in advance of experimental sampling - -

10NOMN962M
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even though we were dealing with distributions of error for single numbers.

When we come to deal with the smoothing instance, our situation is much

worse. Our concern is not just with a single output value, nor is it even with each

of the output values singly. There are many important aspects of quality of the

output that are much more holistic, either sectionally or globally. We have to look

seriously at zt. zt ,+ ..... zj +. as a whole, not just as a collection of separate values.

Indeed. we have to do this more importantly for the es than for the Ys.

This is a type of criterion-invention problem with which we have inadequate

experience. So we need to push on and get some. This means not just writing down

criteria - - much of that has been done to little avail. It means coming much more

closely to grips, initially in verbal and vague terms, with what lack of smoothness

ought to mean to us and why. (We do not attempt this here.)

588*** 3. Near linearity 825828

* IS-boxes *

We use abox to refer to any well-defined process with one or more inputs and

an output.

A one-input "box' that is both superposa/e, namely satisfies

output from a+b - (output from a) + (output from b)

and invarumi under changes in time origin

output from (a shifted In time by h) - (output from a, shifted in time by h)

is conveniently called an IS-box, I for Invariant and S for Superposable. The notion

of an IS box formalizes what is often called uiw*y. Thus IS boxes make up the

Mediterranan from which we start.

If we are dealing with a sufficiently nearly linear proceses or, more generally,

Ir - . . ' .
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with polynomial processes, we may find it appropriate to describe important aspects

of non-linear processes, including some non-linear smoothers, through simple (or

simple-seeming) modifications of the definition of IS-boxes.
sipl-s-mng

quadratic and bilinear boxes

Following Tukey 1984 (Volume 1) pp. 84ff we shall use [ ] to denote the output

of a (homogeneous) quadratic box, where the input is given in the brackets. The

simple identity

[a+b] + [a-b - 2[a] + 2[b]

for all inputs "a and*b and their sums and differences is a simple and effective

way to define what is quadratic without bothering about details. (This approach to

* polynomiality traces at least to the classic papers of Mazur and Orlicz (1935) on

polynomial operations).

From the identity it is easy to show (see ibid pp. 584-585) that
.5'

5. [0] - 0

and

PA~2 [ka] - kIa]

for all rational k. Now only a touch of continuity is needed to give this relation for

all real k.

If we define <, > by

2 <u, v>-[ v+vl -(ul-[v] a 0)

it is easy to show (ibid pp. 585-588) that

<a+b,c+d>- <ac>+ <bc>+ <ad>+ <dd>

so that < > is linear in each of its inputs and is thus conveniently called bilinear.

* Q-, ISS-oxes *

.",5..''''"'2. .. ' ,.,2 .€ . . '.'; ' -¢ ., ,. " " "
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If we are dealing with more general boxes that are also time-origin-ift

invariant, we use "IQ-box" for a single-input box that is quadratic in the sense just

described and "ISS" for a two-input box that is bilinear (that is, superposable in each

input separately. A simple consequence of what we have indicated above (at (0)) is

that:

" given a few copies of an IQ-box, we can make an ISS-box

• given a few copies of an ISS-box, we can make an IQ-box,

* if we follow one these constructions with the other, in either order, we

N return to an equivalent of the box with which we started.

* linear-PLUS-quadratic boxes *

The gentle approach to non-linearity is to consider boxes that are

Inhomogeneous quadratic in the sense that their output can be realized as the sum of

the outputs of IS and IQ boxes sharing an input.

Schematically, we could write

4is

-4

This is a natural analog of the beginning ot a simple power-series expansion. It is
"S .

."* -easy to understand in frequency terms, as we will see in the next section. There are

kinds of non-linearity for which it is a useful beginning.

H* il-boxes - - proportionality

r



~. % The statistician - - and, more generally, the data moother - - in likely to be

much moare drastic, when he or she considers being non-linear. Think of perhaps 'the

simplest of the non-linear smoother., namely

where

"N z, = medianly,.-1, y,.y,1j

So far as we knowthere is no useful polynomial represntation - - surely there is

no linear,-PLUS-quadratic representation - - for this smoother. It is almost utterly

non -plynomial.

It does satisfy a condition of homothety (proportionality), namely

output from (ktime a) - ktimes (output framaa)

(We probably also want good response to an additive constant, which it has.)

This show. easily that it can't be linear-PLUS-quadratic since any linear piece

will satisfy this condition, but no quadratic piece can (they all require k 2 on the

right. not k)I

When it is convenient to have a notation for boxes that

" are t..rgnuf Invariant, AND

" satisfy the Ilomothety condition

we will call them Iff-bomes. Ocearly every IS-box is an HI-box, but not "ace vo-.

Clearly the only box that is bobh IQ and III Is the null box (all of whose output are

IP-boxes - - polyaomiality'

We could extend the ideas back of quadratic boxes both ooeeusand

ihmgemeou, to more general polynomnial boxes. (Orlicz and Mazur have the

approp iatdentities) We might use IP- box for any (no geeu)polynomial
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box. And we would find that the only P-boxes that are also IH-boxes are the IS-

boxes For references to polynomial boxes in general see page 306 of Brillinger 1970.
-V.

In a data-smoothing world where iH-boxes are the rule, focussing our attention

on polynomial boxes - - or on more general initial segments of power-series-like

representations - - seems doomed to failure. The kinds of non-linearity we want to

use are too drastic for such approaches.

* WS-, WX-, and WP- boxes - - except at the ends*

Our discussion of 'nice" boxes always involved time-origin-shift invariance,

involved "shifting an input by h". If this has no other effect than to time-shift the

output, presumably this can be done as many times as we wish, something which

implies unrestricted (and hence infinite) extent in time for both inputs and outputs.

Since we never seem to have inputs of wholly unrestricted length, something has

gone awry here. What should be our stance?

Think about something rather simple, say smoothing by running medians of 5

z, = median IY y_ -, ty,, Yi +, y,+2}

which, as it stands, is not defined when i corresponds to one of the first two or last

two values of an input.

We have a choice

* to let outputs be shorter than inputs, OR

0 to define graceful degradations of our smoothers near the ends of the input.

Only if we have very long inputs does the first alternative have a reasonable chance

- of being acceptable. As we shall see, most non-linear smoothers concatenate

individual smoothing components. When this occurs, the shortening from the

overall process is the sum of the shortenings from the individual components, and

may thus be quite large.
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So only the choice of some graceful degradation remains. If i goes from I to n,

for instance, we may start and stop a running median of 5 with shorter running

medians

zi mediny = Yi
z 2 =medianlyiy 2 -Y3}

z, -I = median Iy . , .I-}
z, medianly. ) = y.

In addition to such a simple sort of graceful degradation, we may well need some

form of further fixup, one that operates close to the ends, such as 'the end value

- rule" (see EDA, Tukey 1977, Chapter 7). (We may be able to use preliminary

extrapolation as a route to graceful degradation, but I know of no examples.)

When we want to be careful, we replace"S.

I = ff time-origin-shift-invariant

by

W = ,f time-origin-shift invariant EXCEPT near the ends of

the input or output, where the smoother, or more general box,

is modified in a planned way.

Superposition, homothety or polynomiality can still be required for inputs of fixed

length.

Accordingly, ideal IS-boxes need to be replaced by real WS-boxes, ideal I[-boxe

by real WH-boxes, and ideal IP-boxes by real WP-boxes. And ideal ISS-boxes become

real WSS-boxes.

This sort of care in labeling represents a care in thought that is always

appropriate, and most often necessary.

SSS *4. Angular frequencies

If we have equally-spaced data Iy, ), as we have just seen the range of t will

always be finite - - and this finiteness will usually matter. This is at least as true in
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connection with analysis into sinusoids and cosinusoids like

C cos(at + )

as any careful discussion of spectrum analysis shows us. As a result (angular)

frequency analysis is unlikely to be really helpful in studying the smoothing of

short inputs.

With this caution, we shall turn to how such frequency analysis can illuminate

the smoothing of "long" inputs, inputs where we are not concerned with behavior

near the ends of either input or output.

transfer functions *

if

=, C cos(cwt + ~

for some C, w, and 4, and if ly, I were to be the input to some IS-box, then the output

has to be of the form

, = D coGair +

for the same w. In more specific words, all an IS-box can do to a single cosinusoid is

. to change its size by a factor D/C, AND

* to change its phase by addition of #-,b' FHERE

e these changes do NOT depend upon C or 4.

(For proofs for various cases, see Tukey 1984, pp. 507 to 509.)

It is convenient to combine these changes into a complex number L ( 10, where

. L(() = (D / C)L- ( 0

where D/C and -4b are, of course, functions of w. It is usual to call L(a) the

transfer function of the IS-box.
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If we have a finite sum

CA ccA t + *)

our IS-box would give as output

~DA cos4At + #A)
A

something we can calculate from the representation of the input and the values of

L (t) at the oh . Since we can represent any finite stretch of input as such a sum of

cosinusoids we can find any finite stretch of output given L (W) and a finite stretch of

input.

In reality, of course, the best we can ask for is a WS-box, but - - except near the

ends of inp and ogapw - - its behavior will be completely described by the

corresponding transfer function.

There may be advantages, in studying the behavior of specific WS-boxes, to

supplement the transfer function of the corresponding IS-box by some description of

near-the-end behavior, but no systematic way of doing this has attracted the

writer's attention.

In more illuminating words, transfer functions completely define IS-boxes

because an IS-box does NOT ENTANGLE frequencies - - which means that each

frequency in the output comes entirely from the same frequency in the input - -

while the same is truc of WS-boxes, except near the ends of the input and output.
.3.

* blurred transfer function S

The smoother& we discuss here are not likely to be either IS-boxes or WS-boxes,

although they may resemble them in some ways. As a consequence, they do entangle

frequencies to a degree, and their behavior is more complicated. To move on to the

next approximation, let us suppose that

y= C cQcat + 4) + Yj



o 2. -

andthat we have fixed upon a procedure, given output 1z, I and frequency &), to write

zi - D" + #) + 7'

where the output corresponding to {y I - - the same input minus the cosinusoid -

takes the form

D" co(wt + )+Z"

Thus, adding "C coo (cot + Y to the input has added to the output an amount, if

we write

D' '

to mean amplitude D" at phase ,

,/" D" c " - De'

at frequency co as well an

which we think of as being at other frequencies. Accordingly

L(Go) D-D. De'#"
C

is the apparent transfer function, which now depends on the Iy3 y-

We no longer have a single valued transfer function. Rather we have a blurred

one. If we wished to insert a probability distribution for the *noise* IY, I we could

have a probability distribution for U(c) - - probably most accessible by simulation -

- and would naturally tend to consider the average and variance of its values at each

to.

Little has yet been done to introduce this degree of realism.

The importance of such ideas today is mainly to ensure that we do not think of

any particular non-linear smoother as having an exact transfer function.

tranzport functions
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An IQ-box - - a homogeneous quadratic box - - has the following frequency

behavior

wi IN - 0. 2w OUT

cl, c2 IN -, 0, 2w, 2A2 w + Wb WI-Wo2  OUT

'7 An ISS-box - - a bilinear two-Input box - - has this frequency behavior

wD1 IN 1 , (2 IN 2 - W,1+W2  " WI-*2 OUT

An IP-box, say inhomogenous of degree 3. with "w,, W, Wa3 IN, that is., with

input

y, - C1 0cjWat + S1 ) + C2 a. 2W +0 2)+ C 3 CaK(0ta + 03)

has an output that may, and is likely to, involve the following frequencies

0
W1i, W2 W

2cta, 2U 2 , 23

0 i+"1D, Ca1 faW2, +'W 3 W1 "-, 3, W2+ W3, + 2-W3

3WaD- 3WD2 , 3W3~

2-i twj (i, j.any two of 1,2,3)

Once we leave the IS-box, IP boxes can be expected to transport input at one

frequency (or more frequencies) into output at other frequencies.

What about W]-boxes? There seems

,. . to be no simple argument as to what sort of transfer ought to take place,

& adequate empirical evidence that input at a single frequency is transported

- mainly to that frequency and its harmonics

" . e inadequate insight into what happens when pair or triples of frequencies - -

or more complicated sequences - - serve as arguments.

We can usefully start to define a transport funtion M (to -d) by input

yJ =C COWt + 0)

" - .- "
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and output

zi mD cs Gdt +)+Z,

where Z, is intended to be -free of frequency ar. It is then natural to try to put

D '(*--*)

M(o- 0dC=r

and to have to face the fact that, in general, the right-hand side will depend upon €,

(The expression in the exponent may make more sense when we realize a time-origin

shift of h has these consequences

#-. + c.'h

- + e'h

showing this expression as the simplest one revealing time-origin-shift invariance.

At the very least then, we have to try to understand

M( - )as a function of

- - as something whose image is a loop, small or large - - especially for

w i' = &, 2w, 3a, - . Transport functions will not be easy to understand, and only a

beginning on this understanding has been made (see Velleman 1975.)

* blurred transport functions 0

All the immediately above was for pure single-cosinusoid inputs. If we are to

understand smoother performance for real inputs, It is probable that we will have

to go to blurred transport functions.

- ntermodulation functions

When we study those human-built analog-signal boxes that come closest to IS

behavior - - hlfi amplifiers - - we do not study their transport functions - - though

for all we know it might be important to do so. Rather we apply

I"'.,- -- .-. * .
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Y- iC ICvI(W It + 0) +C 2 COAo 2t + #)

often with widely different wz and (02 and look at frequencies (01 - w2 and W - -

looking for "intermodulationo. This has served us well in studying amplifiers, we do

not know whether or not it will serve us well studying smoother.

some dangers S

When one has an input that Is likely to include occasional exotic values under

circumstances where (linear) Altering would have been appropriate if there were no

exotic values, we can think about at least three alternative approaches

* construct a non-linear filter in a rather direct way, and apply it to the input

e use a robust cleaning procedure to remove the exotic values, and then apply a

linear filter,

e repeat cleaning and filtering either in order or in some combined way.

The Amrst of these is often dangerously attractive to the beginner. If one dares

to forget the transport and intermodulation behavior. of most non-linear smoother.

- - or of more general non-linear filter. - - the idea of combining, in a single process,

the stripping away of the possible effects of exotic values with the desired filtering

'V, seems attractive. But doing it is far from easy.

The special case of monochromatic robust smoothing - - of low-pass filtering

where the input is a single sinusoid plus noise (possibly stretch-tailed) was fairly

successfully handled by Velleman (1975), but we do not even know how his selected

smoothers would perform for a combination of two cosinusoids plus noise.

a warning example S

Let us look at a fairly simple example. Let our non-linear smoother be running

medians of 5

z medan {Yt-2P Yt-1, Y9-I- Yo+1i Yt+21

a,, . -.,-'-' ,:.' .:,,. -,...,:." .;-.:"- ,-'& :.2.",i :,:
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and suppose our input is

Y 0si2w t 2w t + noise
5 2.2222

where both D and the size of the noise are small.

The values of 100 sin 2v-t-are 0, 95.11, 58.78, -58.78, -93.11, 0, 95.11, 58.78,

-58.78, ... repeating with period 5. So long as the remainder of y ) is not too large,

say

2v tID cos + nose I <18
2.2222

the median of any fve adjacent ys is that y for which 100 sin 2 v t/5 0, that is,

for which t -0 (mod 5).

If t starts at zero, and there is no noise,

z0= z= z2= D c0= D

Z 3 Z 4 MZz 6 =z,7D cos- i- D cos4.Sv -D cosO.Sw"2.2222

z=Z 10=Z Z12 Dc 20r = D cos 9.00 = D cosri z==zvz soZ l:Z 1 : Dcos2-2222

1Z 14=Z 15-16=Z17-- D cos 2.2222 = D cos 13.50r = D cos 1.5 r
i , 18--- 19: 2oz : : D 40wr

Z18=z19=Z0=Z21=Z =D cosD 407 = D coslw - D cos 0

zc 2  2 =50w = D cos2.S ir= D cos.5w23: = 25,', ,: 27: Dcos2.2222

Z"S'Z 2 9 z= z 3 1 2 X3 = D cos6 - D cos 27v - D cos v

etc.

Thus z, is periodic with period 20, and has a simple wave form. Accordingly a

substantial amount of

2w

,*- appears in {z, } - - in fact, this term will be by far the most sizable frequency
i present.

- .

9.



As well as annihilating the

term, the running medians of 5 have transported energy from the

2v t
cog.22222

term, whose frequency of oscillation is 1/2.2222 - .5 cycles/point, to a

cosiar
20

term, whose frequency of oscillation is 1/20 = .05 cycles/point. Beware of transport

and WUermodulationL

M Mallows' linear closest

It is natural to try to study non-linear smoothers by asking which linear

smoothers - - which IS-boxes, which transfer functions - - approximate them most

closely. If smoothers behaved like IS-boxes with little IQ-boxes in parallel, such an

approach might prove very powerful For smoothers that behave like IH-boxes,

however, we must be prepred to be grateful for whatever small gains any such

approach can yield. These results have already proved useful in correcting for

gentle variations in L (W) caused by the use of a non-linear smoother

(Schwartzschild, 1979).

And it may be that we can come to understand the essentials of the non-linear

behavior of certain boxes, perhaps even certain smoothers, by studying the modified

boxes whose final output has been corrected for the linear consequences of their use

by applying the inverse of Mallows's closest linear approximation to the initial

output.

Colin Mallows (1980) has studied this question. His results are interesting, but

"-' :"""" " ' ''" "". '" - "'"-""'" ' -"" J" V..- "'- '- "''" '""", "" ""--"
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of imited help. He appnmimates

[non-linear smooth of] (Gaussian signal PLUS white noise)

(where "white noise means independence from one time point to another) by

[linear smooth of] (same Gausian signal)

(note the absence of action by the linear smooth on the noise!)

and finds a unique best fitting linear smooth. However, this best-ftting linear

smooth depends on both which Gamsian signal p rocess and which white noise we are

presumed to be concerned with. Thus trying to 0omit the noa-llnearlties" gives

different results for different inputs (to an extent that seems not to have been

stuied). The 'linear closest* is not at all like a transer function.

These results are limited to the cae where signal PLUS noise is white. Again

little seems to have been done to study dependence on shape - - and relative Sim - - of

the noise distrihetion

IUttle here seems likely to be easy; probably nothing can be used immediately

to provide major increases in our insight.

***so 5. Simple benchmarks

Frequency analysis of smoother behavior may eventually be quite powerful,

but Its use involves omplextes and difclties. Thum, there is an important place

-i for simpler methods, even when these give quite imited iforatio. Of these, the

-e of benchmarks seems likely to be particularly elpfuL We discus smple,

Individual-input benchmark. in this section and mo e cmplex, mainly probabilistic
benchmarks in the next.

0 kinds of smple becmarks

The simplest inputs we might use for benchmarks include

.),.~~~~~. .,.... .. .. ., . . . ...... . . . .... . . . .
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* breaks - - inputs in which one constant value suddenly changes to another

* straight lines -- inputs that decrease or increase linearly

9 polynomials (in the time index)

0 box cars and towers - - inputs that are zero except for a more or less short

stretch where they take a common non-zero value

0 binomial bumps - - inputs that are zero except for a more or less short stretch

where their values are those of the binomial coefficients (n) for chosen n

0 single-color sinusoids: - -inputs of the form C caoiit + ~

9 combinations of the above.

We will now say a few words about each of these in turn.

*breaks

The desired response of a non-linear smoother to a break is not always the

same. Sometimes, especially in image processing, it is of overwhelming importance

to presewv the breaks. At other times, especially when what underlies the data is

reasonably sure to be smooth, it can be of great importance to " smooth over the

breaks - - and thus keep them from distracting the viewer.

Response to breaks is a tool for sorting smoothers appropriate for different uses,

rather than a uniformly applicable criterion of quality.

*straight lines'

The input

y, -A + Bt

is just about as smooth as an input can be. Thus there is no need for a smoother to

change such input. Ordinarily, we feel strongly that our smoothers should preserw

straight lines, turning out an output identical with the input.
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,polynomial

This desire for preservation extends to polynomial of appropriate degree,

almost always to quadratics and usually to cubics, sometimes beyond. Polynomials

are of interest

" because they are simple to describe and manipulate, AND

" because they imitate, sometimes closely and sometimes not, important aspects

of the behavior of either real inputs or of what after being contaminated with

noise became the real input.

Thus quadratics simulate individual smooth maxima and smooth minlmai sometimes

quite welL And cubics can simulate the connection of a smooth maximum and a

*. smooth minimum.

We often would like to have our smoothers preserve polynomials of degree

some k, either exactly (an ideal) or approximately (sometimes a reality).

* box cars and towers

Lewis Carroll may have originated 'what I tell you three times is true" (a later

science-fiction story describes the effect of including this maxim in a large

information system). One of the main purposes of non-linear smoothers is often not

to believ, what happens only once, in other words to pay very little attention to a

single wild value.

Some number of adjacent similar values will need to be taken seriously. The

proper cutoff - - between what is surely not taken seriously and what will often

need to be taken seriously - - will vary from application to application.

A smoother like running medians of 3, which almost neglects a single exotic

value, but preserves two equal adjacent exotic values, acts as if 'what I tell you

twice is true'

'% %"
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A smoother like running medians of 5 acts as if *what I tell you three times is

truer And so on.

Box cars and towers also serve to classify smoothers into groups made up of

candidates for different classes of applications.

binomial bumps S

Besides short constants - - box cars and towers - - it is useful to understand how

specific smoothers respond to specific short, but more or less smooth inputs. While

broken-line inputs might seem simplest, they do not seem to imitate important

aspects of very common inputs. As a result, they do not appear to be a useful

benchmark.

The binomial coefficients, which give a tower for n-i, give smoother bumps for

larger n (and even approximate a Gaussian density for very large n. The simplest

cases are:

0 0 00 00 1 1000 (n-i)
0 0 0 0 0 1 2 1 0 0 0 (n-2)
0 0 0 0 1 3 3 1 0 0 0 (n-3)
0 0 0 1 4 6 4 1 0 0 0 (n-4)
0 0 1 5 10 10 5 1 0 0 0 (n-5)
0 1 6 15 20156 1 0 00 (n-6)

(Here the zeroes are part of the input, and continue, in both directions, as far as

I needed.)

Unless "what I tell you twice is truer applies we would like our smoother to

neglect a binomial bump for n-1. On the other hand, we would like to preserve

binomial bumps for large n, at least approximately.

The smoothers "3R" and "3R twice" when applied to the binomial bump for

n-4, both yield, as outputs,
I 0 0 0 1 4 4 4 1 0 0 0

00014 4100
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and hence as roughs (input MINUS output)

00000200000

while "3RH' and "3RH twice" yield,

0 0 .25 1 3.25 4 3.25 1 .25 0 0

and

0 0 .25 1.18 4 4 4 1.18 .25 0 0

respectively, as smooths.

Rather than criteria to be rigidly met, responses to binomial bumps seem to be

behavior to be understood, behavior whose understanding often increases our

understanding of the overall behavior of the smoother concerned. Again

understanding of this behavior may let us sort out smoothers in yet another way.

* single-color sinusoids *

When we want to see behavior on something smooth and moderately simple,

but not specifically localized (like a binomial bump), the most natural clan of

candidates seems to be the single-color sinusoids

y, = coSGt + qs)

where we often need to look at a fair number of values of to , starting with rather

smooth instances, which arise for small o.

Since the input is periodic, and the smoother is, probably, W, we are likely to

have periodic output (as always, away from the ends of the input and output). Thus

we are not likely to need to look at more than 1.5 or 2.0 cycles of output. (Looking

at only 1.0 cycles can mislead us.)

With non-linear smoothers, the value of 0 can matter, although for IH- or WH-

smoothers a change of q$ by ir, which takes y, into -y, offers no new information.
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Thus we may want to look at 2, 3, 4 or possibly more, values of - - which may

well be limited to [0, w] - - for a given w - - in the hope that the corresponding

behaviors will not be too different, but not with certainty that this will happen.

N'. Careful thought about how to display the answers may be worthwhile.

Generally - - since we are describing smoother - - we anticipate (near) preservation

for =nall ao and (near) rejection for large & (in our case of integer t, *large" means

* d's approaching v).

* combinations of the above

There may well be much to learn from combinations of benchmarks of the

types just briefly discussed. lowever, we haven't really started to do this yet.

* closing cm ent,

He who wishes to understand a specific smoother, or wants to learn to think

about imoother. will do well to calculate what his smoother - - or a few selected

smoothern - - do to a variety of simple benchmarks.

6. Distribution-based benchmarks S * S *

Besides the simple benchmarks, there is a place - - often in combination with

simple benchmarks - - for benchmarks which simulate irregular variation, 0noise if

you will. Most of these are stochastic - - are thought of as consisting of a population

of posibilities and dealt with in terms of a sample - - of some number of

realizations drawn at random from the coresponding population.

a Gaussian noises, some white *

At one extreme are the *Gaussian noises" where y , Y ., y have a Joint

Gaussian distribution, most often a distribution an unaffected by origin-shift as

possible, so that (y1, y. y,. .-) has the same distribution an (yb ,y. -1, y. (This

implies that the covariance of y, with y, only depends upon I l-j I.)
"L% NL.
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When used in combination with (after superposition on) a simple benchmark,

the most frequent case is that of a white Gausian noise, where all the y, are

independent of one another. this is often a reasonable facsimile of a anice!

background noise.

* stretch-tailed noises - - mostly white

Background noise need not be nice; in fact a main reason for the existence of

noa-linear smoothers is the likelihood of exotic value& Two sorta of stretch-tailed

noises seem most useful for challenging smoother behaviow

0 contaminated Gaussian noise where a% of a broad Gaussian distribution is

mixed with (100-a)% of a narrow Gaussian with the same center, AND

0 slash noise, which can be generated by dividing a zero-center Gaussian deviate

by an independent rectangular deviate (uniformly distributed mn [0, A] for

some A >0).

Again the *white case, where y, is independent of y j for i j, has been used

almost exclusively.

These noises" are also intended to imitate an irregular background. Good

,noothers will reduce their effects on the output almost as far as possible.

Good performanc against both Gaussian and stretch-tailed noise in almost a sane

qua non for good robust smoothers.

There are important applications where noises are "burty' - - where exotic

values tend to come in gioups of 2, or 3, or more; I have no experience upon which to

comment.

a mbinatios among simple benchmarks

Here are several opportumities for the future. Velleman's work (1975) focussed

i on a single cosinusoid plus white noise of different kinds-
Y

.
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PART 2. SOME CLASSES OF SMOOTHERS

S-' * * 388* 7. Median-based components

This section introduces, rather briefly, the basic median-based components, and

a few modifications. Recall that we met the simplest median-based components In
'4

section 2, under *tenting*.

-  kinds of median *

When we have an odd number of values, say the five values 9, 4, 1, 2, 5, their

median is the middle value after sorting in order - (1, 2, 4, 5, 9) - and hence 4 in

this example.

Wbhen we have an even number of values, say 8, 3, 6, 7, there are two middle

values, after sorting in order, in this example 6 and 7. We call their mean the

median, the lower one the lwnedian and the higher one the hinmdian. Thus, for

instance

,.. medl, 36,71 = 1(6) + 7) = 6.5
2 2

-" lom{8,g,6,71 = 6
himI8,3,6,7) = 7

We extend these rules to negative values directly, so that, for instance

med(7,-1,-2,-4} =-1.5
lom(7,-l,-2-41 = -2
him17,-1,-2,41 - -1

thus ensuring that for any a and c ; O, and any k ? 2

medfa+cxl, a+cx2 • , a+cxj} = a+c-medx,zjx • , xz)



nw,. -37-

lomfa+cx1, a+cx2, * * , a+czxi = a+clIomfz1x, ., Ik)

hlmja+cx1 , a+cx2, , * , a+cxj =a+c-hilxlxbz~ ...

(For negative c, the first relation continues while the other two require "lom' on one

side and "himm on the other.)

For odd k. the *him" and 'lom* of any k values are, of course, the same as their

*med.

Swarnng about '40,..

Rather clearly, if we were to plot

we ought to plot it at t + .1. All running medians (or running means. etc.) of even

lengths have this property. It is ahuost always desirable, thereforeto use such comn-

ponents in pairs, one after the other (still other component smoothers can be put in

between, of course) so that our indices move first from integers to half integers, and

then back to integers

* selectors and semiselectorsS

Colin Mallows has introduced the term 'selector' for a function of k variables

whose value is always one of its arguments. Medians for odd k, and all lomedians

and himedians, are selectors.

It may prove convenient to define a semniselector as a function of k variables

whose value is always EITHER

5T 9 one of its arguments OR

0 the average of two of its arguments

Clearly all medians are semiselector.

If we take a selector, and substitute a selector for one or more of its arguments

-- where if we substitute two or more, we may substitute either the same selector

UN
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or different selectors, but generally with different arguments - - the result is easily

sen to be a selector. [A corresponding statement about semiselectors ii false.]

* tothedeath S

Those smoothing components that are selectors are usually also, in a sense

which it does not seem helpful to make too precise here, both smoothing and shrink-

ing, in the weak senses that their output is both not rougher and not more spread out

than their inputs. As selectors, since n y3s have at most n different values, their

repeated use can produce at most n' different sequences. So repetition can only lead

to eventual constancy or cycling. And cycling will ordinarily be incompatible with

"smoothing and shrinking".

Thus, at least for components or subassemblies that are selectors It makes sense

to define "R' as expandable to *repeated to death* or "repeated to no further change

as an instruction to repeat the indicated component or subassembly until no further

changes occur. Such a definition is only useful when the needed number of repeti-

tions is small - or possibly moderate. (The frequently observed tendency of con-

tinuing change to be concentrated in a few segments, rather than throughout the

sequence helps to make a moderate number of repetitions bearable in hand calcula-

dton, since we may only need to recompute for a few short stretches.)

The use of R allows simple components to generate much more potent subassem-

blies. Thus "3' is helpful, though its output has no easily specifiable properties, but

'3R' has a simple property - - it leaves alone any output that moves monotonically

up - or down - between flats where two or more adjacent values are equal.

roots

Whether or not we do R', we need to have some interest in the classes of

sequences left unaffected by a particular smoother. These have been rather felici-

, tously called 'roots" of the smoother, for some results see Nodes and Gallagher

5,i :c-~ - * - " "" .- .- .,- ,, - -..,.. . . • . . . , -. -.-.-. ., .. ,'
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(1962) and Huang (19 1).

*1* S the sh( )components

'.V We have already noticed the importance of a variety of attacks on erosion -

and the limited gain to be had by relying on reroughing (esp. twicing) alone The

sequence of components we are about to describe were called into existence by a

desire to reduce erosion in the most erosive steps.

V
S 45

With a. b c, d. , five successive values in our sequence, 4 is deined an follows

(the mark above the digit Is intended to be a aah mare as in the Cuech language)

5. v medlbd}, if(a-b)(d-e) <0
4 giveto replace c, I mediabd.e, else

In words, if a,b go up and d, e down or vice versa, so that there seems to be a peak, or

a valley, between b and d, we take a median of only the two values b and d, thus

going less far down the mountain (or up the valley walls) (than if we had used

media, Ik d. e. In such situations media, U. e l may resemble

1 medidi + 1 media. el

which, for a centered quadratic, would be 5 times as far down (below the peak) as

-. 1 imedl. di

.'*5 Following, rather crudly, the example of the Cech ".lashky na hacky" (Con-

vV V V
somants with hash marks) like C, a, and r, we choose to prmoounce 4 as "fourh*0

making simila additioms of -h to other numerals.

5 Sandhlgher

In the sine qirit, though lem violently, If a, b c, d, e are Ave mocimve value,
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we define five-sh by

V med(b, c, d) when(a-bXd-e) <0
5 at c lmed(a b,4,e) else

We are now ready to give a recurrent definition, where n=m+2 with m > 3, by

V
S.m if the product of the end differences is < 0
n = medin consecutive values of y), else

Thus for n odd, an apparently peak value will be replaced by the median of exactly

3 adjacent values (for n odd) or of the two adjacent values (for n even).

V
s 30

Y.. A component somewhat related to the end-value rule and splitting (uee later in

V

this section) which is only infrequently different from 3 for noisy inputs is 3,

defined to produce

med med y3_ , y, ed y- 1, eYilmed 3Yi, 2-yi*1 yi2 2
as its output. 3R does not flatten peaks and valleys quite as much as 3.

.Whether we should also consider

med y 3y- 1Y-2 3yi , ,Yi+i

I -- 2 21 2

as a -sh-like smoother is unclear.

V• S

A.modification of S, see later in this section, when 3R replaces 3R in the fixup

phase following splitting, ending, and rejoining.

.5.

I . ;, T' , . " . % . % -,-, , . -,% . ./ ._ ,. , - . . . .- - .. -.
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V

An untried analog of 3 that seems to deserve attention is *5" whose value at t is

median I2y._,-y._2, yt-,. ,. y t... ,-yg.

which is one of the simple smooths that preserves corners formed when all the

relevant points le along two straight lines meeting at a peak (or valley).

discussion

The use of -sh smoothing components (smoothing components, perhaps) thus

allows us to have the greater smoothing power of longer medians away from clear

peak. or valley without accepting the degr of erosive action on peaks or valleys

that the longer smoothers would ordinarily produce.

We need more comparative experience to know how widely we want to ue

such compomt.ent

Clearly all -sh component. (except 3 and 5) are selectors (when an odd number

.!. *of values are combined) or semiselectors (when an even number are combinedl

A further step in this direction, about whose performance we know even less,

fts a straight line to the4, , or more points in question, and apnies 4, 5, etc. tothe

redduals. (The smooth pert of this -sb-ing has then to be combined with the contri-

bution from the straight line.) Whether this step would be for good or bad is hard to

,J..-,.y

s monot-nicity

A simple way to express the fact that a sequence without adjcent ties is

(weakly) monotone (globally or over a section) is to require

yt m dlyt-7. y, yt.1(

which ensures that yf-1-yt and Y,+I-y. are not of the same sign, which Is equivalent



-42-

to ensuring that Y,-Yt-s and yt I-y, are weakly of the same sign.

More generally, a sequence satisfying () consists of monotone sections, joined

,q. by stretches of two or more equal values. (As we noticed above, this is clearly a

* consequence of "3R" since () says that another O3 will have no elect.)

C

If we really want to require (weak) monotonicity, we can ask for (0) for the

condensed sequence Izj in which adjacent ties in Jyj are replaced by a single value.

(Thus t in I zj ordinarily runs through fewer values than t in 1y11.) We will later

have some use for condensation as a smoothing component, so we plan to identify it

by the letter C-

a head banging

Another way to look at medians of 3 is to suppose that we have formed,

somehow, a low sequence ILI and a high sequence { H,, between whose pairs of

values we want the smooth to fall. An easy way to formalize this is to take

median IL.. y HK I

as the output of a component. This approach generalizes to more-dimensional t (to

smoothing in the plane, etc.) (cp. Tukey 1979, Tukey and Tukey 1981) more readily

than other simple sequence (one-dimensional-t) interpretations.
.- ,

the H component

If 2" denotes "running means of f or "running medians of 2", which are
identical, then H = 22 is hanning, definable as

Yt-I + Yt + -!Yt i
T 4

or as

Y. + .1t + I + IY.

0~~ ~ T T S~ .
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iii1 1 1 1
, . " Y t -I + !] Y t+ i + Y

or in another form to be mentioned in section 9. Except for its linearity, which

may be either a pro or a con, its not being even a semiselector, and the failure of H,

HH HH H - to stop at any reasonable number of iterations, the formal properties

of H are of little help.

In the presence of exotic values, it is a dangerous component to use early in a

smoother, particularly because of tenting. Once more robust components have been

applied, however, it is often a very useful polishing tool; especially when 'local

smoothness" is morc valued than the 'precise values of the smoothed sequence".

.4: * end values and S *

The naive approach to the ends of the input sequence makes use of two forms

of a simple idea

a) shorten the smooth (as in components) when there are only enough values

to allow a shorter component (thus at t-2, where only y1 , y21 Y3 are available

symmetrically around t=2, "5" automatialy becomes " 3") AND, at the very

.. extremesr

b) copying on, where at t+l, we take y1 as its own smooth.

Stopping with this last is often not good enough. Though we are unclear as to

what would be best, we do fairly well with the "end-value-rule" according to which

the smooth at t=1 (mutatis nudandis at t-n) is

E-y,) m edlant 3z 2-2z, y1 , z3, .

where z. is the value of the smooth of {ye} at t.

*spidtng
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3R and its relatives tend to leave many pairs of tied adjacent values, particu-

larty 2-mesas and 2-flats, where the tied values are a local maximum or minimum.

-Some of these are quite all right as they stand, others are clearly exotic. One way of

dealing differently with such 2-extremes is splitin.Conceptually we divide the

sequence between the two values in the tied extreme. Then we apply the end-value

* rule to the new end of each portion. Now we can reunite the portions, and smooth

lightly - - routinely with 031', exceptionally as desired.

W'hen we want a smooth smooth, '3R" demands something like " for split-

tinge to follow. Repeating S for the second time is often desirable. (3RSS is a useful

work horse.) Indefinite repetition of S can, however, be dangerous, since 'zipper-

like' action can propagate changes, often unwanted, to indefinite distances

,-'.-'. 5 1 * . Median-based smoothen - assembling components .8....

To make smoothen out of these components we need to connect them, often in

moderately complicated arrangements.

0connectives

There are only a few simple ways to combine components, particularly

resmoothing and reroughing. Resmoothing appears schematically as

- /

Ai 'where the divided arrow emits the smooth from Its smooth arm and the rugh,
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data a mooth PLUS rough

Y, a SYS4 Ity,

from Its rough arm. tesmoothing is most often devoted by simple Juxtapostion - -

where a separator seems needed we will use a cain.

teroughig Is often denoted by am interposed comma, and appears schemati-

mily as

"- wbere the smooth of the initial rough is "added back to the initial smooth. If the

two (or more) smoothers in a reroughing conguration are the same, we may, and

often do. refer to twicdag (thridag. --)

Indefinite repetition - - repetition "to death" - - is only feasible If the p oem

for any flnite sequence comes to a halt after a Salte number of steps. Fortunately,

as noted above, this does happen for odd-length median smoothings, so that "31" - -

meaning "3 repeated to dealh" - - Is a useful fnite process for any finite sequence.

stranding

An approach that has been repeatedy suggested w a way to smooth somewhat

more vigorously - In a sense down to lower angular frequencies - but sems not to

-... have been tried out extensively Is stranding (called "slicing" by Gebeki and McNeil

. A1964). Here the original sequence is Art divided into k subsequenms, each of which

.'. . .- . . . . . - _ /--.,*. . ? . , . , . . . .. . . .
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contains every kth value from the original sequence. Each of these subsequences is

smoothed separately, the results are interleaved to the places from which they came,

and further smoothing applied to bring the strands to a common smoothness.

spacing

We have subscripted our ys with integers, as if the values came at equally

spaced points. What if the spacings are not equal?

For 3, 5, ., and 5, 7, - which only use the ordering of the locations, there seems

to be no theoretical reason at all to make any allowance for unequal spacing.

". Experience seems to confirm this.
~V V

For 2, 4, - and 4, 6, ., including H, there would seem to be some theoretical rea-

son to do such things as replacing H by H*, whose value at t would be

55+6) yt- 6 + fy1 + -2- .7yt #

which is identical to

+_ _' %eYtfI+-

in which the parenthesis can be easily recognized as the linear interpolate from y,-6

and y... toward t = t. Experience seems so far not to have shown such complications

to be worthwhile.

* -''' For high-performance smoothers (we Section 10) involving - - usually section-

ally - - line- or polynomial- fitting it is probably worthwhile to allow for spacing,

mainly because of (a) mean-line (ie. least squares) fitting in the body of the smooth

and (b) unsymmetric windows near the ends.
.For median-based smoothers, the evidence to date favors "don't bother, as does

the simplicity of treating all sequences, however irregularly spaced, as if they were

equl-spaced. So we shall say no more about unequal spacing her
"here.
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condensation for global monotonicity

There are many sequences for which a globally monotone smooth would be

UNacceptable. There are others, however, where we might like to reach a monotone

result.

The alternating use of 3R - - which enforces monotone sections, joined by flats

of length at least 2 - - and C - - which, as we saw, reduces each flat to a single point,

thus shortening the length of the sequence - - is a selector. Thus it can be carried on

. to death" and the final result will in fact be monotone.

One easy way to keep the notation straight in such a process is to introduce

Y.,'. b = the common value ofY y - Yb

Such interval subscripts make going back, say from 3R : C : 3R: C: 3R, which will

ordinarily be shorter than the original sequence, to a smoothed sequence defined for

each of the original t's quite easy.

* historical account

It is moderately easy, and moderately accurate, to sort out many resistant

. smoothers into discrete generations. A reasonable sketch - leaving aside questions

of fixups at ends, etc. - follow=

Generation 1. 53H, 351, and 53QI, both once and twice (Tukey 1971)

Generation 2. 3R, 3RSS, and 3RSSH, both once and twice (Tukey 1977)

Generation 3. High-performance smoothers for long series - based on w-

.w estimates and cosine-arch running linear combinations. (Velleman 1975)

Generation 4. 4323, twice or thrice (Velleman 1975)

Generation 5. 43RSS23RSS (and 43RSS23RSSH) once or twice (Tukey 1974/1985)
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VVVV V VV VVV V VV

Generation 6. 43SS23R SS or 43SS23R SSH, once or twice (Tukey 1974/1985)

V VV V V

Generation 7. 3RSS or 3RSR, once or twice (Tukey 1974/1985)

Generation 8. High-performance smoothers using sectionally-fitted lines (See

Section 1.)

Generation 9. Forced monotone smoothers, like 3RC3RC 3RC 3RC... 3RC -

(3RC)R

Generation 10. Swoosh-swoosh smoothers (See Section 9)

Generation 1). Detrivializing smoothers (ee Section 10).

Generation 12. Smoothers within bounds (see Section ii).

As of the end of 1975, my recommendations for a reasonable bouquet-or menu -

of smoothers from generations 1 to 7 looked like this

. V

.,~ Light smoothing (tell twice is true): 3R or 3R, once or twice.

V VV

Moderate smoothing, preserving breaks: 3RSS or 3RS once or twice.

% V VV

A little smoother, reduced breaks: 3RSSH or 3RSSH, once or twice.

Still smoother with breaks gone: first 43RS23S, once or twice, then 3 - OR first

-. 43RSS23R SS, once or twice, then 3.

For long series, to reduce harmonic distortion. See Velleman 1975

Note: For clean residuals, always use a twice (or thrice, etc.) smoother, or

some other sort of reroughing.

My experience with later generations is not extensive enough to urge me to yet pro-

pose an update.

..* * * * * * 9. Swoosh-swoosh smoothers * ****

For some sorts of data, the natural smooth seems to be a sequence of relatively

smooth sections connected by points of change. (An extreme form would be a

,",-.. ' . . . - . - -



un-W~~~ . rwV VR W 71 - U Wr 7. : Y - -

-49-

polygonal broken line, where the sections are straight.) To obtain smoother that

give such outputs, we need to supplement the collection of more familiar median-

based components, perhaps with those we now illustrate.

5-LOCK

We now introduce one new component, "5-LOCK' by the rule:

(5-LOC) Any maximal monotone section of length 5 or more, containing at
least 3 distinct values, is 'locked', so that the next component is not allowed to

affect any values in any locked section.

This means that anything long enough to deserve being called a 'swoosh" will

not be affected by the next component.

Exhibit 1. based on enrollment figures for Yale University (kindly furnished by

Professor F. J. Anscombe), shows the effect of applying (read from left to right; treat

colons as implying resmoothing)

5-LOCK : 3R : 5-LOCK : 5R : 5-LOCK : 7R : 5-LOCK

As a result most of the smooth consists of of monotone sections, either up or down.

At most ends, these sections overlap, making a locked peak or locked valley.

In our example there are 7 places where one locked group abuts on another (that

moves in the sme direction possibly with one unlocked value between) namely:

1815-16, 1823-24, 1830-31, 1846-48, 1866-67, 1884-85, 1895-%

there might also have been gaps, where one or two years belomged to no locked

group. We clearly want to consider adding another step - r other steps - to deal

with such case.

The simplest way to try to deal with the abutting arrows i to introduce

*ENDS" in terms of these components:

%
------------------------------------------------------------

4- : 4 ,'- 4-* - - - -.%.**.*. - -j- . - : : 4 4 .
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Eltpoexhibit I
Early steps of swoosh-swoih smoothing

the enrollment in Yale University 1796-1975
(5-LOCKS shown by arrows; unchanged arrows and unchanged values
not repeated in later colums; we calculations in exhibit 2 for * - ENDS)

Year In 3R 5 7R ' Year In 3R 5R 7R

1796 115 1840 574123 550
169 537 550

,...195 559 542,55

1800 217 542 559 550
217 1845 588 584 550
242 584 550
233 522 531 558
200 222 517 558

1805 222 204 531 558
204 1850 555 558
196 558
183 605
228 594 605

1810 255 605+
305 1855 619 605

---. 313 598

328 565 578
350 333 578

1815 351 333 641 599
298 349 1860 649 641 617,599
333 349 599
349 617
376' 6321

1820 4126
407 412 1865 682
481 473 470 7094 699
473 470 699 709

,' 459 470 473 724
1825 470 459,470 473 736

454 470 473 1870 755
501 474 809
474 496 485 904
496 485 9551830 502 496 415 13
469 45 496 1875 1051
485 496 1021 1039
536 514 1039 1022

514 536 1022
1835 572 570 1003 1022

570 +
564 570
561 564 571
606 574 564

c %nm

" OTI Unchange wlumn noepeated. 7i3 made no dua~mi this mge.
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Yu b 3R SR7R 0 Yw i 3R 57R

130 1037 I1930 5914
1042 5615 56311096 3M I 1076 5631 5615
3092 1076 5475

1086 ]092 1076 5362
1585 1076 1092 1935 5493 5483

1134 5483 5493
1245 5637
1365 5747 5744:. •147-7 5744,

S189 3645 I 5694
1794 5441969 5036 SMll

2202 MOI 5036
,.,2 qW 4056 '

1895 2412 1945 3363 46• "2615 " 8733" -

"2.5 2624 81II2624 2"64 9017'

, . 1900 2542 AMr a 9:50 745
:"..-2712 768S
,,..2816 7567

3142 3138 7555
3138 3142 7369

1905 3806 3605 1955 7353_
360S 7664 7438
3433 3450 7488
3450 3433 7665

p3312 7793
1910 3282 1960 8129

3229 3282 8221
3258 3272 8404
3272 3288,3272 8333 8404
3310 3272 5614 3539

1915 3267 1965 8539 3614
3262' "m5
2006 T 566 566
2554 I 865666
3306 I9385 9214

1920 3820 f1970 9214 9231.9219
3920 9231 9219.9231
4534 9219 9231
4461 4534 9417
$155 9661

1925 5316 1975 9721
5626 5457
5457 562
5758

55 6184

DiU UIebsgPd oi um a aum 72 sf t soMI em ob MC madee sINg afw 1900

5•
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C, already discussed, which replaces adjacent tied values by a single value, leav-

ing locks in place (even if they now involve fewer than 5 values).

U, which unlocks one value from each abutting lock

by defining ENDS as C then U then 33. all repeated until there are no more abut-

tings or gaps. The details for the example are given in exhibit 2, where temporarily

. removed values are shown by ° signs (and are neglected when applying 3R).

ntraswoosh smoothing

A further step that seems to make good sense is to do some smoothing within the

monotone stretches - the swooshes. Since no median smoothing component not

incorporating averaging has an effect on a monotone stretch, it seems natural to use

some form of running means. The simplest choice is of course H, which we write in

an unfamiliar form as follows (the u+" and - subscripts imply an unwritten 1/2)

A2y t = A yt-A yt- = Yt+j-Y, Yj-I

Hy, = .Iy,+ + y y + -lyt_. = y, + &2yt

This form

Hyt = yt + &2y,

makes it easy to always calculate the "correction7

+!I A2yI = y 1 1  1Ty + IZt~ zn f yt-ytj Iyt-Y-jIl
and then apply it or not as is appropriate.

For our present purposes, we apply it at every t that is not a locked peak or

locked valley. Exhibit 3 - shows the calculations for a sample column of 25 years,

-and the results for the remainder of the sequence.

When we plot the results we get the three panels (which deserve and rcive

different vertical scalesO of exhibit 4. We see that our smoothing has eliminated the

ix
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exhibit 2

The calculations required to apply ENDS
to the 8 abuttings in exhibit I

(5L - relevant put of 5-LOCK)

Panel A
(1608-1837)

Inpwa C V 3R 5L C U JR 5L Owa

1s3] 183
228 228

1810 258 255
305 305
313 313
328 328
3501 350 333 333

1815 352 350 333
298 333 333 349 349
333 I"349
349 349
376 376

1820 412 412 412
412412 412

473 473 470 470
47 a a 470
476 470 473 473

1825 470 473
470 I 473
474 474 474
496 496 485 485
496, 485

1830 4J " 485
485 485 496 496
485 " " 496
514 514
536 536

1835 664 564
570 570 570
570 4 570

J. "" " " . " , ,. ;. ,e.,,'/ "' , ,, e .-. .-.,.,. . .;,. ,. ): ,,: ,
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exhibit 2 (owt'd)

Panel B
(1840- 1835)

Input C U 3R 5L C U 3R 5L Out

184 564. 564
550 550 550 550
550 550
559 550i 559 559 559 559 550 550

15 94 594 594 559 " " 550584 • • 550

531 531 531 531 531 555 555
517 517 517 531 555
531 531 531 555

1850 555 555 555 555
558 558 558 1 558
6051 605 605 605
605 " 605
6051 U 605

1855 605 605

S-.

exhibit 2 (coned)

-'- Panel C
(1855- 1870)

Input C U AR 5 1 Out

1855 605
598 598
578 578
578 578

4 599 599
1 60 599 599

599 599
617 617
632 632
644 644

1865 62 682
709 699 699
699 709 709
724 724
736 736

1870 755 755

"I,

1~.o
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exhibit 2 (cont'd)

Panel D
(1880-1905)

Input C U 3R 5. Out

1880 1037 I1037
1042 1 1042
1092 1092 1076 1076
1092 1092 1076 1076
1092 1092 1076 1076

1885 1076 1092 10921134 1134
1245 1245
1365 1365
1477 1477

1890 1645 16451784 1784
1969 1969
2202 2202
2350 23501895 2415 

2415-;-. 2615 2615
2645 2624 2624
2624" 2645 2645
2684 2684 26841900 2684 2684
2712 2712
2816 2816-.,3138 

3138
3192 31421905 3605 3605

, 'A

ai.

A)..a
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F. exhibit 3

Intraswooob smoothing, initial versm
(Values in ( are locked peaks and locked valleys)

t y, Ay, Ay, 2 
. Ay,2t Hy, Hy,+25 Hy,+so Hy, +7 Hy,+woo Hy,+125 Hy,+15o

- 1796 115 8 ? (115)P 426 552 819 2574 4053 8988
123 45 37 9 132 456 538 893 2646 4381 (9017)*
168 27 -18 -4 164 471 (531) 961 2670 4659 8381
195 22 -5 -1 194 472 537 1017 2683 5035 7924

1800 217 0 -22 -5 212 473 550 (1051) 2692 5311 7672
217 25 25 6 223 476 568 1038 2746 5464 7594
242 -9 -34 -8 (242) 482 593 1026 2871 5625 7512
233 -11 -2 0 233 485 604 (1022) 3059 5746 7411
222 -18 -7 -1 221 488 605 1026 3231 (6184) 7353

1805 204 0 18 4 208 493 605 1035 3416 5999 7455
204 -8 -8 -2 202 496 605 1053 (3467) 5794 7532
196 -3 -5 -1 195 500 608 1080 3384 5638 7653
183 45 58 14 (183) 515 614 1092 3332 5483 7845
228 27 -18 -4 224 537 617 192 3310 (5362) 8068

1810 255 50 23 5 260 557 617 1102 3284 5455 8243
305 8 -42 -10 295 (564) 617 1157 3280 5527 8359
313 15 7 1 314 (564) 620 1247 3274 5628 8437
328 0 -15 -3 325 (564) 632 1363 3272 (5744) 8524
358 5 5 1 329 (564) 650 1491 3271 (5744) 8606

1815 353 16 It 2 335 563 677 1038 3267 5647 8647
349 0 -16 -4 345 560 698 1795 2950 5421 8663
349 0 0 0 349 559 710 1981 (2006) 5162 8802
349 27 27 6 355 559 724 2182 2605 4802 9079
376 36 9 2 378 559 737 2331 3247 4152 9220

1820 412 0 -36 -9 403 559 763 2449 3719 (3362)0 9228
412 58 58 14 426 532 819 2574 4053 7629 9277**

NOTES yt is output of Exhibit 1; A2 y, is taken to the nearest smaller ( ) integer;,

Hy, - y, + 1 & y,2 except wbere prentheied where Hy, yt.

*Only half locked, but treated as locked

"Values of Hy, +17s are 9277, 9431, 9615 and (9721)

%

"'9 -•" " ".. .'.' ._....,. .. x / '' .'.,,'. . ' ., ""•".., " 
" ' " ' ' ; , . . . , . 2 , " 2 r , , . J ' . g ,
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exhibit 4

Smoothed Yale enrollment

4 
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exhibit 4

Smoothed Yale enrollment

Panel C
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(1900-1966)
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roughnesses that might otherwise distract the eye, without eliminating - or evading

- any sudden jumps or relatively narrow peaks or valleys. (The reader may find it

interesting to do pure median smooths on the same original data (cp. exhibit 1), plot-

ting the results and comparing them with exhibit 4.

another revision

"K' ather way to look at the intraswoosh smoothing that we have just done leads

to slightly different answers. We can decide to do the H-like smoothing - adding 1/4

of the second difference - at all ts where A2yt is not unusual. What evidence might

we have for unusualness? Plausibly one of:

a very large value of A-y, compared to what seems natural, OR

a large, but not very large value of A2y, AND a change in direction of monoton-

icity.

So let us try this in our example. Our first observation - no surprise to any of

us - is that A2y,'s seem to be larger where the enrollment y, is larger. Over most of

the range of the data sequence the ratio A2y,/ y, seems to behave fairly reasonably.

(This may reflect the fact that "first aid" would have urged us to work with loga-

rithms of enrollments.) If we go over to these ratios, and look at (a) only non-zero

ratios and (b) only for t > 1825 we find a median l,2y/ y. I of 2.8%.

It is thus plausible to pay special attention to

1) all values of IA2y,/ ytI that are > 3(2.8%) - 8.4%

2) and those at a turning point that > 2(2.8%) - 5.6%.

Doing this produces the following special attention list

', j,--..
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Years I A2y/ y' i Comment

1903 to 1905 10%, 11%, 10% Fluctuating policy (7)
1916 and 1917 38% and 90% World War I
1920 to 1923 11%, 13%, 13%, 14% Fluctuating policy (7)
1929 11% Stock market maximum
1934 6% Minimum
1943 18% Early World War 11
1945 to 1947 180%, 58%0 8% Return from World War 1
1950 9% Arrest of decline (7)

Before 1825, where the I A2y/ y, I are generally larger, we must surely single out

1797 30% 77?

1808 32% minimum (why?)

and probably perhaps should include

1802 14%

1811 14% step (why??)

1820-23 9%, 14%, 12% break (why???)

If we leave out all the years thus listed, making the +A2y,/ 4 adjustment every-

where else, including at the lesser extrema at 1802, 1835-40, 1857-59, 1875, 1877-79,

1938-39, 1948 and 1955, where the size of I,62y,/ y, I does not seem to justify special

attention, we get the smooths shown in exhibit 5, which look rather like those of

exhibit 4.

However, when we look closely at the points - which have been plotted with a

"0" - - where the A&J, / 4 adjustment was not applied in exhibit 5 - - we can see that

the earlier set (exhibit 4) acts as if some otherwise dull maxima and minima were

something special On the other hand, the later set (exhibit 5) tends to emphasize

certain *breaks* as apparently special - e.g. 1821-22, 1905-06, 1916-17, 1922-23, and

1943 and 1945-46. It also indicates disturbance for 1836-38 and 1846-48. Thus the

former (exhibit 4) might be more useful if one only wanted a set of smoothed

values, without interpretation. And the latter (exhibit 5) would certainly be more

:.-,o., ,.,: . -,..,. ,..-.,, ...
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exhibit S

Revised smoothing of Yale enrollment

Panl A
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enrollment

exhibit 5

2700 Revised smoothing of Yale enrollment

- Pawel B(025-1900)
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exhibit 5

Revised smoothing of Yale enrollment

Paniel
enrollment (1900-1975)
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helpful when one wants a smooth that identifies particular points that appear to

respond to either an internal decision or an external event.

This teaches us both (a) that it is not easy to pick out a super-good smoother

from a collection of good smoothers - a lot of examples may have to be treated to

provide comparisons to establish the kinds and frequencies of relevant differences,

since seeing an apparently good performance in one example is awfully little evi-

dence - and (b) that it will often not be crucial that we use the absolute best.

* a lesson 0

One lesson the potential thinker needs to learn from this example is that

differences among relatively good smoothers are often concentrated at relatively

infrequent situations.

* choosing the cutoff *

In dealing with 'Where should the application of the .25A2y, smooth be cut back

to zerot we have to recognize that most instances of A2yt - 0 are the result of three

equal values for y,-, y,. Y,.,. These will probably have come about through the

action of 3R, SR, - and offer no real evidence of how large A2y. would have been

) were it not zero.

While in EDA (Tukey 1977) we introduced "starred letter values" where exact

zeros count only 1/2 each, it now seems natural to introduce "double-starred letter

values" where all exact zeroes (or, conceivably, only exact zeroes of the form 0 -0,

both first differences zero) are excluded from the assessment of typical I A2 I. The

analysis underlying exhibit S was done with

cutoff = 3-median{I &2y/ yj

and would, for a more simply behaving sequence, have been done with

cutoff = 3-median"'IA 2 ytI}

. A .% %-



-66-

Some such choice seems reasonable, at least until we learn more.

Thus G, if we use this notation for the revised version of the limited form of

IL is defined by

iflI&2y, I > Cutoff
I> .pYt. - "y,+ .25,A y, else

r. "with "cutoff as in one of the previous formulas.

Repeated applications of G, as in GG or GGG, have not been excluded, and may

prove useful in suitable circumstances.

p' 

* suggestions *

Seeing this example obviously generates some interesting possibilities for

future study. These seem at the moment to fall into 3 categories:

1) Do we need the step that works on ends of abutting swooshes?

2) What -would happen if we used the revised approach on either raw data or

much less smoothed data? Need we treat locked peaks and valleys specially?

3)'hy not go to 1OCK-4: 3R: LOC-4: 5R : instead of LOCK-5: 3R:

LOCK-5 : 5R : ... in the first part of the smoothing?

%For the present we leave these questions to the reader.

should the cutoff be smoothed?

In a more conventional robustness context, the discontinuity - placed at

(3XM") in the example above - between applying the Ay,/ 4 correction in its
-entirety or not at all, would seem to be a lack of smoothness In an amphitheater

where lacks of smoothness usually seem to require the payment of a penalty in los

of performance quality. But robust smoothing is not a highly conventional aspect of

robustness - in paricular, because the various smoothed y, are not often looked at
individually. Moreover it is a. area where, if we choose, we can identify, either in

AL. ".- . -



-67-

a table or in a graphic display, which points are receiving which treatment. We

know little about criteria and performance - this leaves us knowing less about the

choice between clear discontinuity and more diffuse continuity. Further exploration

would be likely to settle this issue, but it is not clear that any great gains are to be

made from such a settlement.

* drift in emphasis

We notice that, while our initial approach to swoosh-swoosh smoothing placed

heavy emphasis on the distinction between moving up and moving down, the later

versions weaken such emphasis considerably. And the question has been raised - ee

(2) above - as to whether we could profitably eliminate all reference to 'up" and

*down*. Such changes are not to be thought of as either unlikely or unwise. We are

exploring the vast wilderness of the nonlinear - we should expect to follow natural

paths, even if they lead us toward an oasis different from the one toward which we

started!

.9

S"es * * * *" 10. Detrivialization *5852

If we force the evolution of swoosh-swoosh smoothing far enough, we come to a

position where we admit, as our basic striving

9 to eliminate small rapid wiggles, while preserving both slow changes and

large rapid wiggles.

The later modifications of swoosh-swoosh smoothing go a long way in this direction,

but it may help other aspects of the reader's thinking to suggest some more general

components that may prove useful in this connection.

Let us write A2y, in all our definitions, but let us bear in mind that it may be

much better to use a2y,/ y, or &2y,/ y' 2 in appropriate circumstances.

a clas, of indicator functions
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_ The novel characteristic that entered the later subassemblies of swoosh-swoosh

smoothing was a "sometimes yes, sometimes no" application of a component accord-

ing to the value of I A2y, 1. If we let A stand for the choice of a % and a multiplier,

we can define an indicator IA(t) by

)1 when IASy I > (muliplier) C%point of I A~y)
'A(t) -0 else

with this notation, we can write

G=H unless IA(t)- l

= I else

where I is the identity, for the application of H except where (A2y I is large.

. We can also, for example, ask about the behavior of

3 unless l6(t) -I

separately and in combination with G, where B may equal A, but may involve a

different combination of "% point and multiplier.

* rank rather than value

Another approach would be to calculate all I A2 I sort them, and then act on the

'Ssmaller ones. Perhaps the 80% smallest? Perhaps the 90% smallest? Perhaps do it 3

times (like 3 banning ) for the 55%, 65% and 75% smallest, respectively. (Much

exploration is probably needed.)

Or this could perhaps be combined with the use of indicator functions.

Here then is another 'landfall outside the Mediterranian" whose exploration

may prove useful - or uninteresting.

3 8****** 11. *Supersmoothers! SSSS

There are purposes for which a very smooth smooth indeed seems appropriate.

3,
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One of the i. to prove a somewhat more fieible alternative for both (a) quadratic

polynomials and (b) singly-broken lines (mionogons) when considering the

repaceentof an assumed linear dependence by something slightly more general.

Most such smoothers operate by fitting a straight line to a section of the data

srrounding the point in question. If there may be exotic points, either this At has

to be robast, or there should be a preliminary application of some other robust

smother.

Almost all smoothers belonging here have one or two tuning constants, to be

ad~std to fit each specific sitatiom.

We do not plan to r evwiew this class of swoother, with any care, contenting our-

slves with ident if ying some of the most used by name and suggested feelings.

One is W. S. Cleveland's (1979, 19S1) lawess smoother. This has see n quite a lot

V of use, and seems to be quite effective. Further detrivialization might help the

Another - or a group of others - comes from Jerome EL Friedman and his co-

workers. (See Appendix 3. section 31, for further discussion and reference notes.)

It is specifically planned for use in re-expression, for example as an important part

of the ACE routine.

The procedure for robust spectrum analysis discussed by Martin and Thomson

(1982), iterates the two-phas stop

fitting of a simple extrapolator

depending on an estimated spectrum, followed by redecending mdfctO f

innovation - data R04US exrpolation

While intended to provide a robust spectrum, it does a very good job of eliminating

exotic values and should be a mer-ideal Amrs step when longer sequences require

'a.,.
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robust smoothing.

12. Smoothing within bounds

A not infrequent type of problem involves not only values ly, I but measures

Is, I for how closely each is likely to be to what it ought to be (unless It is exotic).

Doing a good job of responding to this problem will require much more experience

than we presently have. Particularly in a piece directed at how to think about such

questions, however, there seems to be a place for some tentative explorations.

One very restrictive version would be to look at

median I y, -1. y,-s,, y,. y, + S,, Y:+1

which always lies in the interval [y, -s,, y, +s, ] and can be thought of as a generali-

v: zation of head banging.

When we come to iterate such a smooth, we will want to replace y, -1, y,. y, + by

their respective smooths z, -z, z, +i but to retain y, -s, and y, +s,. (Similar reten-

tions should occur for the versions that follow') It can be schematically indicated as

median xxI

where the parenthesized values are multiples of s, and the columns (not the rows) in

the first section correspond to subscripts.

A second, closely related version uses
median{y,_--s,_ , y,_ +s,_ , y,-2s,, y,-s,, y,, y, +s,, y, +2s,, y,+,-s,_-, yt,+s+,

which can be schematically indicated as

SX (+ +)
xxI(+)

median .x

~XXX* ~ ~ *(-)
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This result has to fall in [y, -2s,, y, +2s, where t is again the schematic horizontal

axis, and will often fall in [y, -s,, y, +sj If we were to iterate, it is not clear which

4 .values should come from the current smooth and which from the original data.

Once we have reached this pattern, we can go over to an end-value-like con-

struction, replacing

y.l--sg-. and y-,+_l.l.$

by

Y,-1 and 3 Y,-2- 2 Y-3

and replacing

y,,-sr, and y,+, s,,

by

Y,+ and 3y,+2- 2Y,+3

This version seems only likely to be helpful after some initial smoothing, though we

must try it out before we understand it.

Firm constraints to [x, -s,, x, +s, ] or [x, -2s,, x, +2s, ] are likely to be too severe

if exotic values, which may be far outside [y, -2s,, y, +2s,] are at all likely; if, for

example, we need to face up to measurement fluctuations of estimable size AND to

*' exoticity. In such circumstance we might try such components as

X (+)

mtedian . x'.1. x (-)
"x '(- -)

or

med .x
whih i-)

',." 'which, for each t involved - - each column in the first section - - have more entries
'p.P'

-, ... ,, .-. ,-..-, ..- ,. : . ..... \ ....- - ,,, . . ... ., -.. : .... ,- -.-...'
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with subscript it t than with subscript - t, and, As a result, are not so rigidly r-

tricted.

13. Functionalization SSSSOS

We introduced a class of smoothers (at the opening of Section II) as more flexi-

ble alternatives for simple functional forms. Successful fitting of one of the (some-

- -,what?) more flexible forms inevitably leads to the question - motivated by the twin

advantages of parsimonious description and of knowing how many constants are

effectively being used - 'can we do almost as well with a relatively standard

parameterized functional form?"

Dealing with this issue requires us to identify some useful functional forms,

and consider how to fit them.

Quite a lot of thought and experience tends to leave us with a very few func-

tional forms. Their behavior of most of these is easily describable in terms of their

" lodid' or "logarithm of divided difference". This is given, for z a transform of x,

and the (z, x) pairs ordered on increasing x, by the combination of the logarithm of

the magniude of the divided difference

log I I
I Xt +I-X I

and the sign of the divided difference.

The proposed standard forms are as follows:

nature lodid behavior

singlT-broken line two constants, abutting

quadratic (around extremes only) (first divided-difference linear in x)

exponential linear in x

power (probably non-integral) linear in log x%4
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.

Notice that quadratics are NOT to be considered unless the presence of a max-

imum or minimum (possibly somewhat outside the data support) is quite certain.

Appropriate techniques for diagnosis and fitting have been described under the

" name of "smelting" (Tukey, 1981).

• S* 500 * *14. Approaches to equivariance S * OS

We often like our data manipulations to have some form - or forms - of corn-

patibility with simple modifications of the input. And then there are times when

we are careful to avoid such compatibility.

Most of the techniques of smoothing we have considered here commute with

"add a constant and 'multiply by a constant'. (The use of I A2y, I / y, does not com-

mute with "add a constant, however.) They generally do NOT commute, however,

with 'add a slowly changing function of t', *add a linear function of t or *multi-

ply by a smoothly changing function of to.

It may help to look at one instance of such non-commuting - so let us take the

simplest non-linear component we use often - -'3' - - and three successive values of

y, say 15, 12, and 30.

If we add nothing, we have

' 3' applied to 15, 12, 30 is 15 which restores to 15

where *which restores to' means *if we subtract, from the median of the three

values (here 15) the value at our center point of the added linear function (here ident-

ically zero). (After all AC - CA means C -AC = A 1)

.- If we add a linear function of slope 3, say the one with values 100, 103, 106, we

may have

3' applied to 115, 115, 136 is 115 which restores to 12

% % - *-

b .'%
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If we add a linear function of slope -10, my 200, 190, 180, we may have

"3" applied to 215, 202, 210 is 210 which restores to 20

More generally, we get the results in the following table:

slope restored value

-30 12
-20 12
-18 12
-15 15
-10 20
-22.5 1.5

-5 20
0 15
3 12
5 12

10 12
20 12

where 12* continues unabated for either very large or very small slopes, but a

tent-like broken-line dependence takes place between -18 and +3.

Clearly 3-based smoothers are not equivariant under "addition of a linear

function of t.

What can we do about this? Roughly, our choice is either to "forget it" or to

both fAt and subtract some linear function of t. Clearly the At can be either global

or regional (- segmentwlse) clearly we can At in any of many ways-

The prime versions of "At and subact" are the (Cleveland) versions of super

smoothers (see Section 11). (It is an interesting question if the Martin and Thomson

procedure would be slightly Improved by fitting a low-order polynomial either

locally or globablly.)

But we can promote equlvariance in simpler ways. We might, for example,

smwoth

(.,+ 12- Y,-12)/ 24

• ., ... - I. , • -, + -+ + ,+ ., - .,, ...- ".. +,.' .'+,- .- '/ " ~ ,, ,r +. ., ,,J -. y,. ,,. ,, ,, .' ? '' ,.' ,.,
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very severely, and use the resulting value, b, at t - t as a corrective slope for

a) applying'3 toy,_+b, y,, y,+,-b,AND

b) restoring the remit.
h .

,; -The point in We on do such things, so we need to think about doing them.

These brief indications are included In the hope that they will stimulate both

other ideas about, and sore comparative study of, smoothing within (or guided by)

5%* bounds.

*8 88*8 15. A very different application

v! Median onoother were suggested (pp 631-634) for relating apparent "line" to

background in Tukey 1964

16.Concluon

Almost all conclusions have to be temporary. We have explored only umall

patches of the non-linear continent, patches conveniently close to the linear sea and

some of its tributary rivers And we have not been able to help pure exploration

appreciably, as yet, by formalizing realistic goals A few general points. however,

seem unlikely to change.

* diversity

We need to recognise a diversity of aims, and try to meet them with a diver-

sity of smoother.,

delicacy

Distinguishing amonng smoother that are at least fairly good for the purpoe-'.-

at hand is a delicate matter. Performance for one data set - or for ten data sets -

may just not be enough to tell us which is to be preferred. Equally, it may not
7

matter that much which one we choose, although it might.

.,
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exoticity

Techniques which in one way or another treat the exotic differently from the

K usual are important - and can play very different roles. (As when resistant smootik-

ers Pay mJimal attention to exotic values - but the final phase of swoosh-awoosh

smoothing leaves large IhAy, I unadjusted, while smoothing others.)

* experimentation *

Theory is almost cerai to consist of numerical experiments, often with uto-

chastically defied inputs. Formula manipulation has so far taught as little.

' erosion*

Some problems wil clearly be with us as long as we smooth. One is erosion - a

problem for which we have suggested a variety of palliatives. Reroughing does a lot

to minimie the consequences of erosion, but we clearly do not thinkr it does enough

- else why would we have suggested so many modified components where the

modlcaionserves to reduce erosion. Moreover, absent erosion, no one might, have

invented sxwoosh-swooshm smoothing.

Erosion, will not go awayl But we can expect more and newer devices to eventu-

ally reduce its impact still further.

0 reader's suggestions

Suggestions from .readets for other useful subjincts to be pointed up in this sec-

tion would be particularly welcome.

Other comments and muggestlons are striongly encouraged.

I am happy to thank David Brillinger, David Douioho and Colin Mallows for

helpful comments and sgetions, for whose Altering and alteration I take full

responsibility.
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Appendix A

Antirobust non-linear smoothers and the Beveridge
wheat-price series

David Brillinger suggested to me that the famous Beveridge Wheat-price series

would be a useful test bed for some newer non-linear smoother. So some of these

were tried out, and, as a consequence the behavior of the Beveridge series was

examined and considered. As detailed below, this series, far from appearing to

contain exotic values, seemed to be less irregular at its local extremes than

elsewhere. Sace such behavior seemed not unreasonable, and might occur in other

instances, a moother was developed which was anti-robust in the sense that the

initial steps involved picking out extremes and 1aking means, with median-smoother

components relegated to a minor role, later in the process. The present appendix sets

* out.

a) the structure of the resulting smoother,

b) the resulting smooth, AND

c) the resulting rough

where all calculatioms are based on a logarithmic form of the basic series.

AL The character of the everidge series se**

A convenient source for the data is pages 623 to 626 of Anderson's book

(Anderson 1971). This source gives, as Beveridge did, (i) actual index numbers and

O(i) a trend-free index" obtained by dinswn by a 31-year running mean. Since our

aim is an additive breakdown, the words "index number' and *divisions are trumpet
to.

," calls toward the taking of logarith.

.1*

. .,--. .., . - " . . ,. ,' .','.% ' . -..- . •. •..*.. •. - , .. . ,"."-"."." ",r ° ' ,,., .,2¢ , ~



\- 78 -

It seemed convenient to use logarithms matched at 100 - - so that 100 - 100 and

,* -so that the slope at 100 is unity - - this calk for

100 J,(index) - 100 In- = 100_1n( --e)
100 100

for which some illustrative values, rounded to integers, as was done with the

Beveridge series, are

Index kg Index bg

25 -39 100 100

50 31 110 110

60 49 U5 122

50 78 150 141

90 19 200 169

100 100 300 210

These illustrative values show rather clearly the qualitative character of the

reexpression rsed.

When the original series was modified only by some interohange of adjacent

values, the resulting series for 1700-1869 (the second portion of the srias that

extends from 1500 to 1869) appears as in exhibit Al. One fairly clear impression

that one gains from this plot in a surprising degree of uniformity of size of the up

and downs. (The next most noticeable appearance is the bulge at 17W-1815,

contemporaneous with the Napoleonic wars.)

The appearance of this plot is sufficiently well-behaved an to suggest

experimentation with moothers concentrating on local extreme.

4..
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exhibitAl

The Beveridge sries for 1700-169

(a few pairs of adpent vauw intachangei)
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The result of a little experimentation, biased toward simplicity and the

avoidance of ad hoe choices, was a smoother involving the succesive application of

the following components:

kfsi). No preliminary tinkering, not even adjacent intercmhanges.

seond. X - - identiication and uelection of all local extremes (centered time for

adjacent ties), which must alternate between highs and lows,

third). H - - hanning the selected sequence - - this means linear aombinations

with weights 1/4, 1/2, 1/4, so that total weight 1/2 goes on oue or two lows,

and an equal total weight on one or two highs,

fou&-th). 31 - - meaning medians of 3 applied *to deaths (Le. repeatedly)

fifth). P - - In which short stretche. of tied maxima or tied minima - - extrema

within the XH3R series - - are replaced by the nearer (in value) of the two

adjacent values - - in the XH3R series; here "short stretchein was taken to mean

exactly two adjacent values in the selected series tied, the process was iterated

as necesary.

It can be argued that the Ifith comnonent was slightly ad hoe. However, much

expelrience with 3R indicates a real need to do something about tied extremes of

length two Thus our choice does not seem to be seriously ad hoc, though it may be

too weak.-

Exhibit A2 shows the calculations, for all 156 extremes in the original 370-long
E

-' Exhibits A3 and A4 plot the results for 1500-1700 and 1700-1869, respectively.

:



The applicatim of H3RP to the extremes () of the
Beveridge wheat-price series in 100-matcbed logarithmic farm

(only chneVd values down in 3 and [P] column.)

Year extreme X > H 3R [P] Year etrme X > H A [P]

1500 -77 L 1583 42 H 36h 39
- 02 -61 H -90 -76 84 35 L 77 56

04 -104 L -79 -91k 36 112 H 41 76 60
07 -97 H 112 -100 -96h [-91h) 88 47 L 93 ,  60 65
09 -121 L -72 -96k [91h] 90 75 H 55 65

1512 -47 H -99 -73 1591 63 L 75 69
14 -77 L -54 -65 -73 92 71 N 63 70
16 -61 H -87 -74 [-73) 93 63 L 75 69
13 -97 L -52 -74k -74 [-73) 1596 109 H SO 34 70
21 -43 H -93h -63 -71 1601 54 L IQk 70

1522 -90 L -52 -71 02bk N 52b 58 66 [M)
V "- 24 -61 H -93, 77 -71 05 51 L b 66 [70)

25 -97 L -42h -70 09 97 H 62k 80
31 -24 H -90 -57 -58 [-67] 10 74 L 39 31k 80
34 -33 L -32h -5 [.671 1611 81 ir 76 79 30

*.. 1535b -51 H -83 -67 12 79 LO Mb 30
37 -3 L -589 -71 13 30 ir 75 77h
38 -66 H -30 -13 -71 15 71 L 33 77 ["1)
40 -77 L -34 -55k 17 36 H " 75 77 (77h
45 -2 H -87 -44h -49h 1619 57 L 100 7b

1547 -97 L -2 -49b -44h 22 104 H 73 93h

51 -2 H -64 -33 24 9 L 114 101k
53 -31 L 14h -8 [-91 2S 114 Hf SO 101k

V 56 31 H -37 -3 -3 [-9) 27 9 L 12 108
57 -43 L 21 -4 -9 1630 139 H 92b 116 111 [108

1562 11 H -28b -9 34 96 L 126 111. [1os]
U -14 L 17h 2 37 113 H 97 105

65 24 H -11 6k 39 93 L 108 103
68 -8 L 50 21 40 103 Vr 9k 101 103
73 76 H 3 42 33 [271 1641 101 Le 106h 104 102

1575 24 L 52h 38 [27) 42 110 H 92 101 101
77 29 H 22 25 27 (34b] 45 33 L 120 102 101
78 20 L 34h 27 (34h] 49 131 H 65k 98
30h 40 V& 29 34h so 48 L 130h 89
32 38 LO 37h 38

NUM "" itands for 'and a half. (hi.n *IV I "la" for high etne6 "L for low Onew. When
valum of texrm" are very com to me another, -a s dxed, far later VO. olUmM a > In "plit-

msn, comtaInIng the arithmetic mean of the "extreme colmmi valum for the previoan and following

How; example -9Mk w ((-77) + (-1041 lum air in a ne-mose. cootlaiing the arithmetfic meas of

the estries in aismm; "extreme ad HIr in the MOM Us& (hmmm "3" drw rumg medIaln of3 of
the pineding column, repeated n nec ry. The "[Pr colu- omom alamid valum replacing palied
sfminima or paired maxima (in X[]R vaum) by the mret of the ad.ceit valie

!A



fthdit A2 (Camt'd)

Ymr esae X > H 3M (P) Yew oqrm e X > H 3 [P]

1651 130 H 48 89 1768 135 L 150 1421
54 49 L 98h 39 71 161 H 137 149 144 [1421]
3. 55 67 W3 57h 331 (39] 73 133 Ls 150 144 (142h1
56 66 Le 105 35 (891 74 139 Hr 127 133
61 143 H 60 101h 91 76 117 L 134h 1M

1667 54 L 128 91 17 130 H 116 123 1241 (1261
74 113 H 69 91 79 115 L 134 124 [1261
76 34 L 105 94 91 84 133 3 1231 131
78 97 H 77 37 35 132 L 150 141
32 70 L 96 33 89 162 H 132h 147 143

1684 95 H 67 31 1791 133 L 153 143
35 64 LO 81 72h (751 92 145 H' 138h 142 143
36 67 HO 56 62 72h 17S 93 144 L 168 156
33 49 L 107h73 95 191 H 193 169b
93 148 H 731 113 97 152 L 198h 175

1695 103 L 149b 129 121 [1131 1300 206 H 162h 184
9 151 H 90b1 121 (1131 03 173 L 204 1 8, 187

1702 73 L 122 97 04 20 H 172h 137 193h
03 93 H 63 78 90 (9711 0h 172 L 206h 189
06 54 L 126 90 (9711 11 211 H 172h 192

t 09 1o , [ 31 120k (151 1813 173 L 222h 198 196 [1921
11 10 L 1461 127 [1151 16 234 H 157h 196 [1921

1713 133 H 971 115 21 142 LO 189 165h
16h 37 . L 119h 103 22 144 NO 138 141
19 136 B Iit 94 [951 23 134 LO 139h 137 [1411
21 76 L 108h 92 94 [951 1324 135 H3 132h 134 137 [1411
2.5 111 [ I 96 95 (941 25 131 L 158h 145

- 1729 87 Ls 108h 95 (941 28 132 H 148h 165h [1631
30 94 ir 0h 37 [931 29 16 L 179h 173 165 [1631
32 74 L 98 36 37 [931 30 177 H 179 163.
36 102 H 34- 93 1834 132 L 177 154 162 (1631
37 95 L 125 110 (1061 38 177 B 147 162 [163

1740 148 H 89 119 110 (106h] 40 162 L 172h 167 163h

43 34 L 129 106b 41 168 3 19 163b 167
46 110 H3 961 103 106h 43 156 L 185 176b
47 109 LO 114 ll1 [1081 146 202 3 191 175 17A1
4 lie 3 105 ll1 (1081 49 141 L -0 1731 175

1750 101 L 115 108 [109h] 54 210 3 149h 180 [1761

51 112 H 7 105 108 [109h 57 153 L 20 10 (1761
54 94 L25 10 6o0 195 N 156 176 (130]

1757 138 3 102 120 1363 IS L 197 176 [1301
60 110 LP 131 12& 120 66 199 8 14 1811

61 124 33 111 117h 120h 63 173 L 190 1811
63 112 L 131h 122 (169) (181) 3 (131)
67 139 B 1231 131

MM
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"it A4

*Xi3Jtp amoot of the Deveridge aria

(1700-1869)
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A3. Paeble/plausibLe zkodifcatiom . ..

Scollect the difference in values between adjacet (-,nwo1hi)

we get the results in exhibit AS. The distribution seems quite fiat in the middle, as

- it presumably should be ().

exhibit AS

Stm-nd-laf dsplas o the peak-to-peak
swlnp in the Beveridge mrles (log wale)

16 (at 1500 end) and 8 (at 1869 end) omitted
* (±1 *2. * 3 are undersored)

San 1500's 1000. 1700' ISM. Total (muliaeve)

8 S 9 2(3)
' r 4 2 2(5)

. - 3457 4(9)
P 2 19 3(12)

.Q SM 49 07 34 1 7(19)
46 6 368 47 456 9(25)

-, V 28 05 79 6(34)
2 239 55 035678 9 13(47)
Is 267 057 123499 15 14(61)

, 457 13579 17 16 13()
-W 979 922 76411 4 13(75)

• -1 221 8753 3752 6520 12(62)

-20 9511 9553 94220 6 LS (50)
-3- 66220 1 90 32 12(35)
-V 73 30 6 60 7(23)

-, 952 2 2 5(14)
-0 S 0 4 1 4(9)
-70 4 a 2(5)
-...W 3 1 (3)

""S 2 2

If we decide to try expunging extrema which contribute to a difference of only
"J.

I or * 2 we got cha s in 8 prtios of the uerlie (3 rather near each other in

1605-1614, 2 in 1773-1793) as calculated in exhibit A6 and displayed in exhibits A7

and AL It Is interesting to note that, in every case, the expunged extremes involved

adJant years.

i*.-



eWkit A6

malmatmom of' u a amtributitg to pmk-to-pmk ddfts of I or *2

(la k- is * >P comm indicate eumes wqg.
(P3 glvw Anal onooabd exuremm. (,) gvu. las two columns of eklilnt A4)

Tow e ms > * '3 [P1 (M) ytn extrem > H 3a 101 (AM)

73 76 3 42 38 (28) (38)[25b] 1767 139 123h 131 (131)
1575 24 M, 33 23 (8)[25)l 63 135 150 142h [1311142h)

77 29 22 25k 28 (27) [34h] 71 161 126 143 142h [1313 (144) [142h]
79 20 35 23 35 (21b) [34h] 73 131 (144) [142 )
Oak 40 (34k) 74 139 (133)
I* 33 (38) 76 117 145h 131 (126)
33 42 27n 35 (39) 77 130 116 123 124k (1313 (124b) [126
84 35 56 (56) 79 115 134 12h [1311 (124h)[126

160 51 O D 6 [70] (66) 1701 34 133 123h 131 (131)
09 97 62h 80 79 [75k) (O) 5 132 150 141 (141)
10 74 34 79 [75h] (3) 39 162. 132h 147 (143)
11 81 (30) 91 133 176h M (143)
12() 92  145 (143)
13 (79h) 93 144 (156)
15 71 80 7Ak [73k. (77h) [71b) 95 191 142h 167 (169h)
17 R6 64 75 73k [71b) (77b)[JT3 97 152 198h 175 (175)
19 57 78 (71h) 1300 206 162lk 134 (134)

1630 139 92h 116 111 [1031 (111)[108] H1807k 172 206k 189 (189)
34 96 126 111 [1081 (111) (1081 i 1 11 172h 192 (192)
37 113 97 105 (105) 13 173 22h 193 193 [192] (196)[192]
39 93 111h 105 (103) 16 134 132 193 1192) (196)[1921
40 103 (103) 21 142 (165k)
41 101 (10a) 22 144 (141)
42 110 0k 100 102 (102) 23 134 (137)[1411
45 3 120k 102 100 (102) 24 135 (137)[141]
49 131 65h 9 (930 25 131 208 169h (145)

1650 48 13 39 (3) 23 182 148k 165 169b (165)
$1 130 43h 39 (39) 29 16 179k 173 165 (165)
54 49 136h 93 [91) (39) 1830 177 149 163 (163)
55 67 (mb) [39]
56 6 (IAk[), [
61 143 51k 9 93 [91] (91)
67 54 128 91 (91)
74 113 69 91 (91)

1736 10 Mk 93 (93)
37 95 125 110 [look) (110)[101k]
40 148 35b 119 110 [108h] (110)(106k]h
43 34 133 109b (106h) 11103
46 110 (106h) [lio]
47 109 (111k) (101
48 111 92k 105 108 (111b1h310

e 101 11.5 10 105 10 (10) [1k]
51 11 97k 105 10 (108) link)

54 94 125 109k (look)

V . %- . . .. . .. " - .. . : .- . . .. .. ". . . , ,,.
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.... .oo, A. Smoothing the peak-to-peak changes S *8

We have looked at the general trend, but not yet at the degree of oscillation.

Exhibit A9 smooths the absolute values of the peak-to-eak swings, the result is plot-

ted in exhibit AIO.

We can inquire into the reasonability of our omlmion of the ± 1 and * 2 swings

by noting their effect on the smoothed peak-to-peak values. Calclations are exhibit

All, where the one * 3 is also excised and the results in exhibit A12. All the deep

valleys in exhibit AIO have disappeared; most of the changes have had such an

effect. On the whole the elimination of the * 1, * 2, and *3 changes seems to have

'V . been helpfuL

kThere i some reason for apecting that "peak-to-peak assessment of swing is

less stable than othe" assessments might be. To this end, exhibit A13 shows a

smooth Of

' Ipeak of one kind MNUS median of adjacent peaks of the other

which is otbewise comparable to the first section of exhibit A12. It seems that this

assessment may be more stable, but not by enough to urge us to follow through for

the other sectons at this point. (Ratios of max to =in are 62/9 - 6.9 in A12 and

64/15h -42 AlA3.)

- oo 5 AS. Detrvialiatioa to s hm m ness

Turning back to the modifed XH3RP smooth (cp. exhibits A3, A4, A7, AS) which

Is intended to portray "typical behavior, we easily se that the greatest improve-

ment in overall quality is likely to come from the removal of distracting wiggles.

To this end we can apply detrivializers.
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.: 2-. shibit A9

(no Te swings from peak to peak
(ntcouting either 1500 or 1969 &s a peak)

wim ) Mmd te gwimp (6) and tkdv swimp (a) and tbdr gwimp "' and tkdr
moolkag moklagmoodhia mboothag

* -date b~ndate dat

-43 16 1503 -7 23 2664 -12 39 3710 -U2 22 IM1

17 30 sS *1 27 Uk *25 so 172 .+7 16 1

-24 24 03 -23 10 comb -4 JD 14 -10 4 22h

470 47 13 42 2 111 .20 20 1 4 1 in"

#17 47 530 *15 15 13 -17 11 29b 21 -52 29b
.7 41 421 -2s 9s 44 140 S0 -0 1 2

-1 37 ISM -as 9s 39k -3 17 52 -i7 .0 5as

.9 62 49 -27 9s 264 44 14 12 -26 16 136

-29 62 1as -43 13 47 -2 14 1762 6 4
-32 62 34 -13 19 34k .27 14 6669 6 15

-74 42 5k -12 13 4h 44 23 A 07k0 6
5 62 6 41 13 41k .2 24 70 4" 4

-25 33 43 -17 13 1654 -24 23 16b 4M -6 16
-39 62 1569k -1 13 47~ .1 12 1762
-32 62 6 .77 1s 59h -22 14 7
-74 63 SO -32 59 64O *U IS f7
-52 59 74 .59 59 70 -15 IS 70
-25 98 6 498 29 165h -23 15 1772
-39 98 1569h .1 27 Sib +I 23 34A

.2 9 79 -27 27 W0 .30 23 37
-2 9 a1 .25 25 Is -29 29 90
44 9 ck -31 25 SOk 1 29 91b
-7 9 3bk .P 25 1633k .16 39 94

477 13 ISIS -13 37 37 447 39 94
-G5 13 37 .9 40 90 -3 39 U6
+28 12 3W -40 43 94 .54 39 93
-12 12 oft 443 43 U6b .33 39 Sam
+1. 12 91b -73 43 1700 +29 26 03h
-12 22 1592 426 39 ok .30 36 06

.6 46 94 -39 at 04 .39 33 6
45s 46 94 106 39 08 -33 33 12
+'' 10 46 I6SO -52 at 1710 .61 so 1314

33W twii, appbod to abmitu vahmr of IWfa

*4o



-91- peveLjVWV'

exhibit A10

The smooth of peak-to-peak
(from exhibit A9: lot 2 pezels)
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ezhibt MO (cosed)

The smoseof uA9 for 1760-1869
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exhibit All

Modified swings and snooths

64 38 1570 +27 14 1766
-52 9 74 -4 26 61h
-9 9 77h +26 26 70

-23 9 0 -44 26 74
-7 32 Wh +13 15 76h
77 48 I5 -15 15 78
-5 48 87 .23 1s 82
28 28 9 -6 23 84h
12 12 1590t +30 29 87

.... -29 30 30
.10 46 1602 -+58 39 93

-7 26 04 39 39 96
.46 26 07 54 39 96

-,-26 26 12 29 36 180I
+15 26 16 30 36 06

-29 25 18 39 38 09
+57 25 1620 -38 39 12
+19 19 1636 .61 61 14
-15 19 39 -- 103 61 30

-- 27 19 44 .51 61 26
+48 19 47 16 61 21h

-13 18 49h +11 45 29h

12 18 S3m .45 23 34
41 18 16.52 -45 23 34

-15 23 39

-29 29 1675 6 16 40h
+13 27 77 -12 16 1842
-27 27 80
+25 27 83
-46 27 86
9 43 90
.40 43 94
+43 43 96

+9 43 1700

+28 30 1734
-7 28

.53 44 38
-64 44 42

-"34 34 46
-17 17 49

11 17 Stb
-18 17 52
44 17 56
-28 14 1758

%' '% " " " '5 " % "-' .% "- % '* %'' %,' * • .' " % ,, "-%. %''-.*,'- "'% - * " - '
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.zhibi A12

Smooth after droppifia
aitreme melt to =an cbaagi

j.after droppia
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exhibit A12 (cat'd)

Smooth after dropping
(third panel 1760-1864)
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exhibit A13

Sample uctin of smouth of
peak-tomedian-of-peaks

(coinpai with let uectionofa exhibit A12)

40.
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We choose to apply first D( 3) and then DkI, followed by 3 where

)(3)Y!' i - 2Yj + 7+3

D(i) = Y + A.Yf fr Most i

= Yi wheneverl ?()yi I0 3 mod Ih j IJ

D(1) 4 - *1+ !A)4 for meetli4

M z1  whenevW I AI 03 med I~iIJ
The opening calculations are given in exhibit A14, and the points are plotted in

exhibit AIS. (The Anal 03r made very small changes in 3 places - - by intezvbraging

two adjacent values - - in 1719-20, 1753-4 and 1757-, in addition to the small div-

plact-mcnt (at 1702) down in exhibit Al)

This final result is very smooth to the eye, except for 2 or 3 clean braks (at

1736-7, 1784-, and pomibly 1718-9). It might well have been even smoother had we

worked to one more decimal place. It shows the *Napoleonic hump" superimposed on

a slowly rising trend (about 100 logarithmic units in 180 years, about 0.G% per

year).

We ca have visually very smooth resalts from simple, precisely defined

moothing techniques. Deurivialimr can help a lot in this.

.can



Desaivalinion ofd r i-m'UpoiaAn I uO muncL
(mA -1 1700 to lI6 I ., m - i nI-L)

Y Te X83$F (1) A3 Ad ) (2) Ai) A1: _( 3

16J 92
1 99
2 106
3 113 21 -21 a 113
4 113 14 -14 a 113 0 -2 b

95 113 7 -7 -2 111 -2 3 a

6 113 0 -4 -1 112 1 0 0
7 113 0 - a 113 1 -1 0

8 113 0 -12 a 113 0 -6

9 109 -4 -71k -2 107 -6 4
1700 10S -8 k 0 105 -2 -2. -A 104

1 _1 -12 12 a 101 -4 b 0 101

2 m7k -Ilk ilk a 97 k l sk a 9 99

3 -976 -71 7k 2 99k 2 -2k -k 99
4 97 0 6 lk 99 -b -1 0 99

05 97k 0 Ilk 97k -1k 1k k 98

6 9'1 0 17h 97h 0 lb a "k
7 103k 6 sk lk 105 7 -4 a 105

8 109 Ilk -2h -k 1081 3 3 a 101k

9 us 17k -17k 115 4k " a 113
1710 115 11k -11k 115 0 0 0 115

Notation (1) interpolate between XH3RP pints. A(W) - YI-YJ-3

A& ~ A~=() at 3 MINUS A3 att (3U1) exet06(takaui w z

when I?) at i I 3hdin I A&at j I (2) -IO)r ( "plus "(ame)"

A, = - etc. (3) - D(2o).

J..
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Appendix B

More on "local linear" smoothers

BI. Recent work at Stanford

The most recent work by Friedman and his collaborators involving local-linear

fitting seems to be embodied in:

Jerome H. Friedman 1984. * A variable span smoother.- Technical Report No. 5,

November 1984, Laboratory for Computational Statistics, Department of

Statistics, Stanford University.

John Alan McDonald and Art B. Owen 1984. "Smoothing with split linear fits,"

Technical Report No. 7, July 1984, Laboratory for Computational Statistics,

Department of Statistics, Stanford University.

In Report No. 5, Friedman develops a locally-linear fit smoother using updating

to make multiple choices of span, and eventually a variable span, Lomputationally

affordable. Absent exotic values, this smoother is reasonably attractive, both

because of its performance against moderately difficult inputs and because the

rationale for the various choices in its use are quite clearly explained. It is thus

particularly important to emphasize that it is neither a robust nor a resistant

smoother. (And that it does not take advantage of twicing.) All the local fits of

straight lines are by least squares, and can be drawn far off by a relatively small

number of exotic values

A report dated 3 months earlier



o 101 -

Jerome W. Friedman, Gene IL Golub and Werner Stuetzle, "Project ORION, Final

Report, August 1984 (ORION 026) Department of Statistics, Stanford University

said (page 8, para 2) In addition to the LCV smoother a rejection rule for outliers

was developed. If deemed necessry (emphasis added), the LCV smoother can be

*. preceded by application of the rejection rule to the data et, thus making the

combined procedure resistant.! It is far from clear what smoother Friedman ef al

*would recommend when.

The smoother of 07 appears to be constructed to allow matching some of the

properties of median-based smoothers - not indicating their abilities to deal with

exotic values - within the framework of locally-linear least-square fitting. Its

robustness is harder to assess than that of the previous smoother. By using a

weighted combination of results for several windows, many of which extend only to

*2 the left or only to the right, it seems likely that this smoother has gained some

robustness.

B2. Comments on "locally-linear fitting * .

Discussions of *locally-linear smoothing emphasize the geometric image of

fitting local lines, but rarely come to the nub of the matter. As Friedman points out

(1984, page 4), the simple moving average smoother has two serious shortcomings: "it

does not reproduce straight lines if the abscissa values are not equispaced" and it has

"bad behavior at the boundaries".

Why does the "locally-linear smoother do better? Essentially because the fitted

line is of the form

p.

mi + b1(x- 1)

where m is the mean of the y's in the window associated with xi ,that of the x's,

and b is the corresponding slope. The value at xi, which is the locally-linear

smooth, is thus
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mi + b64-11)

where, away from the boundaries, x-ii is often both quite small and an irregular

function of L The difference between "locally averaged' and 'locally linear'

smoothers is thus a correction term involving bi as a multiplying factor. Thus it is

appropriate to consider that all the complications involved in producing a well-

tuned locally-linear smoother at a fixed span are concentrated in finding a reasonable

sequence of estimates for a sequence of local slopes, which might be attacked in

other ways. The remaining effort involves choice or mixing of spans, a matter of

considerable importance.

3* 8 * *B3. Cleveland's lowes

The basic reference still seems to be Cleveland 1979. Lowess, although

(Cleveland 1979) discusses fitting polynomials of other degrees, uses robust locally-

linear regression with compound weights - products of robustness weights and

window weights, the latter falling to zero at the furthest edge of the local window,

which consists of the r points x-nearest to x, where r - nf for some chosen f < 1.

(Cleveland, at page 834 (center right) worries about window-finding

computations of order fn2. Fortunately the division of the r points of a window

into some on each side can be handled by bisection - comparing I x- xA l and I x-t

to learn which way to go, so that one window can be found in order log r - log fn

steps. After complete sorting, all windows can surely be found in order n log fn +

log n steps, which is order n log a.

Cleveland further suggests (same paragraph) saving computation by grouping

the ;i. It would seem as simple, and more effective, to group windows, grasping a

window to minimize

maI I X-XA I, I 0-, I}

% L

4 . *
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for h given and WA - r + h, which can also be done by bisection. The single fit to

this window can then be used for each of xb xi+,, • , xih. All in all, the

computational problems of lowess do not appear serious. (Other approaches seem to

have been implemented.)

In using lowes. it is important to realize that r - fn is for a tapered window

not for a cookie-cutter window. Thus f -.5 in lowess is likely to correspond to

something smaller, perhaps f - .3 for a Friedman smoother.

esse** * 4. Smelting

The estimation of local slopes, more precisely of their logarithms, is an

essential of a procedure suggested by the author for allowing one quantity to guide

the re-expression of another. This appears in J. W. Tukey 1981 "The use of smelting

in guiding re-expression," Modern Data Analysis, A. F. Siegel and R. Launer, eds..

Academic Press, New York, 83-102.

The basic approach involves, for an input of (uj, v1) pairs;

1) a fairly careful smoothing of the ful, both by modification of values and by

excision through replacement of successive i's with the same smoothed v by a

single point (placed half-way between the extreme u's involved)

2) calculation of divided differences,

3) application of a median smoother to these divided differences (or,

equivalently, to their logarithms) to identify which u-intervals should be

combined (either because adjacent values are made equal or because adjacent

values are interchanged)

Comn"u: the smoothed values obtained in (3) are only used to guide excision'

4) elimination (further excision) of the points whose removal will cause these

intervals to be combined.

I
.1



-104-

In the re-exprum case, we want the signs of the divided diferences to be

constant, so we can work with the logarithm of their absolute values. And it is

often reasonable to anticipate that the value. underlying them logarithm will be

monotone

In the "dope for correcting moving useans' application, however, we cannot be

as sur of any of tm oveniences. While stage (1) - - which uses vertical median,

3RSS repeated to death, horizontal -ide- esp - - -can probably be continued

without much change (we might want to use horizoutal means in the third

subphame) we aced to at least re-think the later phase..

This sort of approach might lead to an overall structure of the following form

A) Snmoa heavily, obtaining slope-estimates baued upon excision and divided

differene at a moderate number of places,

B) expn these results to all t by interpolation and extrapolation, (linear?,

count,

C) use the result as Vs in adjusting moving average iniootherall

It is far from clear whether such an approach would prove to be an impr ovement.



Appendix C

A looming strategy

The example App~endix A and the discussion In Appendix B leaves us with an

anticipation of one important place to go next. Given four things:

1) substantial amounts of data;

2) a desired to display the smooth to an eye (or eyes)

* 3) a belief that 'lowess or possibly a Friedman smoother would do moderately

well, taking us quite a way to our goal, and

4) a recognition that it bs no longer hard 'to do better (especially In trsof

Yv sua I i mpression, perhaps eve a little in term of values read *off the curwe)

- -We no"l h I)( it natura to plan to follow, in order, the steps in the following multi-

phase strategry

A) % ;-obust initial JAt, to srp off the most exotic values, replacing then by

reasonable substitutes an an Input to the next step.

B) A quality -nohometric At, using *all the allowed pinciples of witchcraft

such as twicing, cross-validation and allowance for curvature

C) Detrivialfration or same other antirolurt polish (may in. part have been

included in (B).)

Of these three pham, most of orattention inees to be directed toward (3), since we

kno a number of setIsfactory ways to deml with (AX, and expect (C) not to be

diScult. Since we And it ums couvenimt to discuss th sse in a moan coanete

context, we plan to dics both the aspects needing mdcainand possible

modilatloAM r for Friedman moothers and tben for Cleveland's lowess.

*SSS* ~ CL Modifying Frie ans -aabespurn smotherwsss

This smoother (Friedman 1964 detailed reference in Appendix B) bassically am-
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sits of three smoothers - woofer, midrange - middler, and tweeter - with smooth-

lug of the qualitative results of cross-validation used to select a linear combination

of adjacent smoother. Exhibit C1 (Friedman's Figure 2b) shows the three smooths

for an artificial example, whose points are tight to an oscillating curve at the left

but loose to it on the right. Exhibit C2 (Friedman's Figure 2a) shows the resulting

composite smooth.

As was to be expected, since the smooths are based on utwiced locally-inear

non-robust At, the woofer smooth fails to track hills and dales to any reasonable

degree. It seems 'a poor show" to use so unsatisfactory a smooth as competitor in

the cros-validation. At least two natural cures are at hand.

- - *) We may twice ( or maybe thrice) the woofer. [We can do this without

rIncreasing computing time by calculating the mooth at only every 3rd or 4th

x-value, with the possible exception of x's near the boundaries. Since the

*-. woofer's span is n/2, we do not need closer detail, and can complete the calcula-

* tion by linear interpolation.]

**) We may (a) fit a straight line, and (b) apply the woofer, then writing each

observed value as

observed - (1 + K1) (woofer) - K (strafht line)

with a different K, for each data point we can smooth the values of K, to obtain

expansion factors K, and then a candidate smooth from

smooth -(1 + kj ) (woofer)- k, (straiht line).

(Limiting I KI to (2 will probably help.)

Either of these techniques should produce a reasonably improved candidate.

The middler (midrange) mooth does quite well in the example - although it
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exhibit Cl

Friedman's Figure 2b
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seems unnecessarily rough. On the one hand, we might like to hope for a still better

At by (a) applying the middler to the rough from the modified woofer, and (b) taking

the (modified) candidate smooth as

smooth by woofer PLUS smooth by middler of rough by woofer.

On the other, we might gain a little by detrivializing the candidate smooth (original

or modified). Doing both could be a reasonable investment.

The tweeter smooth is mainly uncomfortable in terms of its irregularity.

Detrivianzing with D(, D ) and then Dl). in that order, should do no harm - and

might well do good. Applying the tweeter to residuals from the middler smooth

might also be desirable.

With 3 improved candidates, we can expect to do quite well by applying the

Friedman technology of linearly combining candidates (his pp.-9). It will probably

be wise to smooth ( (I r , (J)1)" 2) rather than j r)(J) against J, however. (Since

we plan to get final visual smoothness by detrivialization, we ought not to have any

need for a *bass (tone) control' (Friedman, pp. 9-10). We can thus avoid the

difficulties shown in Friedman's figure 4b.)

C2. Curvature adjustment? • • •

It may be that enough twicing was proposed in the last section to take care of

the failure of "locally-linear fits to allow for curvature. And it may not be that

this is not so. Certainly the raw woofer in badly enough subject to curvature bias,

that, if this is not fixed - for instance by either of the methods suggested in the last

section - we should make some explicit allowance for curvature.

One way to do this in to

1) And a high-grade visually-smooth smoothing I;),
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- exhibit C3

Friedmnr's Figure 4b
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2) reapply the whole muloothing procesa to 1z.1 obtaining (Sz.

3) make a bias adjustment for the shift (Sz),,-z, which neans taking

zt + (xL-(Sz)t) = 2z1-(Sz)t

as a bias-adjusted smooth.

While this last step may me=m quite different from Otwicl a little a&gbra is

illuminating: If z - Sy, then Sz - SSy, and 2z - Sz - 2Sy - M~y which apoiae

S(2y -Sy) -S(y +Ry)

which approximates

Sy + Sy - result of twicing.

Both aprxmtoswould of caurs be exact equalities if S wone superposable.

We do not yet have enough experience to know whether (or when) to prefer 2z

-Sz to the result of twicing. (Even a selected convex linear lnation of the two

might be in order.)

In doing (2) it may be desirable to force the use of the same mixture of

mooths 1X) as was used In getting I zt.

*80** C. Improving Cleveladls lowells ~

As Cleve]ans figures B and C clearly show.

1) Lial is likely to benufit by further samoothing in the =sall (perhaps A.%)

then D(3) then D(1) if the smooth is evaluated at W0100 equispeced poInts)

2) We may want to linit the number of internal extremes in ou smooth

Re point 2, his Ogure C sems to have 9 such - a Maoothed-in-tbe-ml version

seas likely to retain 5 or 7 wech - for mysielf there are many Instancef (most

mooths or cirumsotance reqmose, for ezamaple) where I would like to limit the

number ofintnal ezu'en to 0, l1or 2 - oroften, to each of t in turn.
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(Time series smoothing or image smoothing would typically sot call for such a limi-

tation.)

Cleveland di~cusses, giving no detail for his algorithm, again on page 834, but

on the lower left) the use of croom-validation to choose f. It would seem Easy to

modify the calculation to limit the number of internal extremes, after micropolish-

iag, to 0, ;C 1, or IC 2 (presumably available for f sufficiently close to 1). [Th&e prob-

* able usefulness of such constrained cross-validation i no evidence against the possi-

ble existence of still better smoothx subject to inch constraints.]

At page 831 (lower right), Cleveland raises *the danger of inappropriate inter-

polation' when smoothed points are joined by straight lines. This i less of a worry

* than it might be, since Cleveland has just suggested calculating the fitted points at

'S. equal x-spacing. It can probably be changed from a loss to a gain by requiring con-

nection if and only if, for the two adjacent points in question

I slope 14med I Islope Ijall pairs of adjacent points)

(If two adjacent segntents are to be omitted the intermediate point should be shown with a

distinctive character.)

All in all, lowess: should be reasonably satisfactory in its original form - and

even more so modified. Its major disadvantages seem to be

a) roughnmw in the small, AND

b) no provision for limiting the number of internal extremes.

8**** XH apossibility *00*8

When we look at Cleveland's Figure C, and remember the Beveridge series we

are tempted to try an iCR calculation. Exhibit C4 shown

1) points Oread off the curve for his figure C (symbol ex!)
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2) xII points, where H - (W4, 1/2 1/4) frrespectlve of spacing of extremes

(symbol a-

3) XII. where A average@ one extreme with the linear Interpolate of the adja-

cent extremes (symbol +

4) various broken lines

It does seem that lowess with a small value of f may be usefully XH'd. (What

to do near the ends is unclear.)
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